Letort Spring Run Coldwater Conservation Plan Route 34 to Interstate-81

Plan Prepared by: Cumberland Valley Trout Unlimited

&

Cumberland County Conservation District

CUMBERLAND COUNTY

<u>Index</u>

Introduction and Background	3
Organization Backgrounds	3
Area of Study	3
Watershed/Protection Area Description	5
Location	5
Size of watershed, drainage area, stream length or order	5
Chapter 93 Stream Designation and Stream Classifications	6
Land use (farming, residential, commercial/industry, etc.)	6
Ownership (Public Access)	6
Stream Impairment-303(d) list	7
Detailed Maps of Watershed	8
Map 1: Letort Spring Run Watershed Map	8
Map 2: Letort Spring Run Upper Reach	9
Map 3: Land Use in the Letort Upper Reach	10
Previously Existing Information and Current Data Analysis	11
Letort Spring Run Habitat Assessment Excerpt	12
Aquatic organism passage (stream crossings)	15
Aquatic life: Macroinvertebrates	16
Aquatic Life: Fishes	17
Invasive Plant Species	19
Letort Spring Run Water Quality Monitoring Program	21
Stream Soil Phosphorus Study	25
Areas of Concern and Opportunity	26
Recommendation Opportunities	27
Challenges:	29
Future Funding Opportunities and/or Potential Partners	30
Summary and Conclusions	32
References	33
Appendices	35
Appendix A: Stream Stats	35
Appendix B: Historic Discharge	35
Appendix C: Habitat Assessment	35
Appendix D: Stream Soil Phosphorus Study	35

This Project was financed in part by a grant from the Coldwater Heritage Partnership on behalf of the PA Department of Conservation and Natural Resources (Environmental Stewardship Fund), the PA Fish and Boat Commission, the Foundation for Pennsylvania Watersheds, and the PA Council of Trout Unlimited.

Introduction and Background

Organization Backgrounds

Cumberland Valley Trout Unlimited (CVTU) is active in coldwater conservation efforts in the Cumberland Valley. Recently, CVTU has celebrated its 50th Anniversary and has grown to over 600 members. CVTU is dedicated to the preservation and enhancement of coldwater resources within the Cumberland Valley including the Letort Spring Run, Yellow Breeches, Big Spring Creek, and Cedar Run.

Past CVTU work in the Letort includes their Feet In The Stream (FITS) Team that looks after maintenance of the Letort, including raking weeds from the substrate to enhance spawning sites, raking the substrate to release sediment to enhance spawning habitat, cleaning up fishing line and other litter, as well as, constructing fish habitat structures.

Figure 1: CVTU's Feet In The Stream (FITS) crew working to expose gravel substrate and remove reed canary grass.

The Cumberland County Conservation District (CCCD) is active in advocating the stewardship and protection of the natural resources of Cumberland County to sustain and improve the quality of life for its citizens. Active programs include Nutrient Management; Chesapeake Bay Program; Dirt, Gravel, and Low Volume Roads; Watershed Program; Erosion and Sediment Control; and Post Construction Stormwater reviews. Active programs include the District's Annual Tree Sale, Annual Envirothon, and Golf Tournament. The District uses raised funds to promote Environmental Education through public events and scholarships.

Area of Study

The study area will focus on a 2.2 mile stretch of the headwaters, starting at State Route 34 to the overpass bridge of Interstate 81. Stream miles are measured from the confluence of the Letort and the Conodoguinet Creek upstream based on methods from U.S. Geological Survey. Our study area is located between stream mile 5.7 and mile 7.4. The Letort flows north east until an unnamed tributary joins from the east, known locally as the East Branch. The West Branch is locally known as Bonny Brook. The main branch then flows north towards Interstate 81 and the town of Carlisle.

This section of the Letort is designated as Exceptional Value (EV) and Migratory Fish (MF) under Title 25, Chapter 93 of the Pennsylvania Code, as Class A Wild Trout by the Pennsylvania Fish & Boat Commission and as a Pennsylvania Scenic River by the Department of Conservation of Natural Resources.

The Letort originates from limestone springs, which gives it unique qualities and characteristics. Temperature stays consistent due to the geology of the area. Stream level stays consistent as well due to water infiltrating through the porous bedrock in the surrounding areas. The stream is a low gradient stream that supports habitat for brown trout, blacknose dace, slimy sculpins, white suckers, pearl dace, mayflies, and aquatic sow bugs.

The Letort Spring Run has a rich history in the Cumberland Valley and Carlisle. Historically, it received its name from James Letort, who trapped and sold furs as part of the initial settlement to the area. Before that, it was an important trade location for local American Natives as a trade route between the Yellow Breeches and the Conodoguinet Creek.

The Letort Spring Run also became legendary among fly fisherman through Charlie Fox, Vince Marinaro, and Ed Shenk. Vince Marinaro discovered the importance of terrestrial insects on the diet of trout and created several flies and fishing techniques along with Charlie Fox and Ed Shenk.

Over the years, the Letort corridor has become witness to many different challenges. There have been several fish kills and vegetation kills along with siltation being trapped in the cobbles and creating too many vegetative patches. Urban sprawl has increased stormwater runoff and nonpoint source pollutant loads have increased. Limestone karst geology and sinkholes are a challenge both within the stream corridor and the surround landscapes. However, the Letort does persist as an exceptional resource and fishery.

Figure 2: View looking downstream from Bonny Brook parking a rea footbridge showing exposed gravel in the thalweg of the stream with watercress and elode a providing cover for fish.

Watershed/Protection Area Description

Location

The Letort Spring Run is located in the center of Cumberland County and flows through the town of Carlisle. The main stem of the Letort is 6.5 miles long and has a watershed area of 21.8 square miles. The Letort flows into the Conodoguinet Creek, which then flows into the Susquehanna River, which flows into the Chesapeake Bay.

The Letort spans multiple municipalities, including Dickinson Township, South Middleton Township, Carlisle Borough, North

Figure 3: Location map of Cumberland County. Yellow Star located on the study a rea, near Carlisle, PA.

Middleton Township and Middlesex Township. The municipalities that are included in the Letort partnered together to create the Letort Regional Authority.

The project study area will focus on the upper reach south of Carlisle from State Route 34 (Holly Pike) to Interstate 81, and includes an unnamed tributary that enters from the east and is locally known as the East Branch. The main stem of the Letort within the study area is a total of 1.6 miles and the tributary coming in from the east is 0.69 miles in length.

This section of stream is mostly located in South Middleton Township and a small portion of Carlisle Borough.

Main Stream Corridor:

Upstream latitude/longitude at State Route 34: (40.168498, -77.193592) Downstream latitude/longitude at Interstate 81: (40.188140, -77.186058) East Branch: Upstream latitude/longitude near South Spring Garden St: (40.174015, -77.177183) Downstream latitude/longitude confluence with main stem: (40.176748, -

77.185414)

Size of watershed, drainage area, stream length or order

The watershed of the Letort is composed entirely of carbonate rock, which gives the Letort unique characteristics. The Letort is a low gradient stream, in the heart of the Cumberland Valley. Most of the stream's flow comes from a network of underground springs through limestone Karst geology. The temperature and level of the Letort stays consistent year round due to constant inflow of water from the springs.

Drainage area for the study area is calculated at 8.4 square miles (5,376 acres) via StreamStats mapping program by the US Geological Survey. Please see attached map in Appendix A. The

headwater of the watershed is dominated by agricultural and rural homesteads, with more urban development closer to Carlisle. The stream corridor has open meadows, wooded areas dominated by mature trees and rural homesteads.

The Letort is a first order stream at State Route 34 and becomes a second order stream at the confluence of the unnamed tributary. The unnamed tributary, locally known as the East Branch is a first order stream.

Chapter 93 Stream Designation and Stream Classifications

This section of the Letort is designated as Exceptional Value (EV) and Migratory Fish (MF) under Title 25, Chapter 93 of the Pennsylvania Code, as a Class A Wild Trout by the Pennsylvania Fish & Boat Commission.

On March 30, 1998, the Letort Spring Run was designated as the seventh Pennsylvania Scenic River by Pennsylvania Department of Environmental Resources. Today, PA Department of Conservation and Natural

Figure 4: Young brown trout caught and then released.

Resources (DCNR) oversees the Pennsylvania Scenic Rivers program. The Letort is classified as Pastoral, with scenic views of grass fields and agriculture.

The Letort has a population of naturally reproducing brown trout. Historically, the Letort was stocked with brown trout, brook trout, and rainbow trout, but these have all faded out except the reproducing population of brown trout. Other fish species that are present include blacknose dace, pearl dace, white suckers, and slimy sculpins.

Land use (farming, residential, commercial/ industry, etc.)

Land use is dominated by agriculture. There are small pockets of woodland along the Bonny Brook section of the stream by State Route 34. The lower reach of the study area is Urban and has been classified as part of Carlisle Borough's Municipal Separate Stormwater Sewer (MS4) program. According to Stream Stats, 11 percent of the upper watershed is forest and 4 percent is urban. 6 percent of the watershed is industrial with Union Quarries.

Ownership (Public Access)

Public access is available to the Letort in several areas of the study reach. The Letort Nature Trail follows the old South Mountain Railroad bed along the Letort and is ADA handicap accessible. Several parking areas are available at the trail head in the Letort Park, Lamberton Middle School, and Spring Garden Street.

Cumberland Valley Trout Unlimited owns Vince's Meadow that is downstream from Union Quarries and has a parking area off of South Spring Garden Street. CVTU also owns the Frey/Tiley Tract, and Trego's Meadow that is upstream from Union Quarries on both sides of Bonny Brook Road.

Central Pennsylvania Conservancy purchased the B&W Quality Growers Watercress Farm in 2018, which is located on the East Branch and is accessible via the Letort Nature Trail's Spring Garden Street parking area.

Private property does abut both the Nature Trail and CVTU's properties. Please remember to be respectful of private property.

Figure 5: View of the Letort from the footbridge near parking area looking upstream at Bonny Brook Road.

Stream Impairment-303(d) list

The project area of the Letort is not listed on the 303(d) list for impairment in this section. Even though it is not listed on the 303(d) list, this section of the Letort does have sediment and siltation problems. As sediment deposits it creates areas for aquatic vegetation to be able to take root. Elodea and other aquatic plants growing in the stream channel cause the water to slow, resulting in sediment deposition. This excessive plant growth blocks channel flow, which causes water levels to rise, which has started to change the hydrology of the meadow conditions to become more marsh like. Bank saturation has also caused soil instability and has made stream banks more prone to erosion.

Detailed Maps of Watershed

Map 1: Letort Spring Run Watershed Map

Map 2: Letort Spring Run Upper Reach

Map 3: Land Use in the Letort Upper Reach

Previously Existing Information and Current Data Analysis

The Letort Spring Run is a low-gradient limestone stream that receives most of its flow from spring seeps from limestone Karst geology. Water stays a consistent temperature year round, with cold water during the summer and ice-free flow during the winter. Water chemistry shows that it is alkaline (pH greater than 7) and is rich in dissolved nutrients like calcium.

Above: Stream Gradient Information: (Scenic Rivers study, page 16). Red box shows the area of study. Elevation at Route 34 is about 470 and elevation at I-81 is about 450, which is only 20 feet difference over 1.6 miles gives a slope of 0.24%.

Hydrology for this section of the Letort is shown as an 8.41 square mile watershed according to Stream Stats mapping program from the United States Geological Survey. Please see USGS Stream Stats map located in Appendix A. Shapefile from this application was used to make maps 2 and 3.

Hydraulic data from USGS 01569800 Letort Spring Run in Carlisle, PA near route 11 collect flow rate data from October 1, 1975 through September 30, 2009. The mean flow varies from 35 cubic feet per second in the drier months of August through December and then increases to 60 cubic feet per second during the wet spring months of April through May. Data chart is located in Appendix B.

Letort Spring Run Habitat Assessment Excerpt

An assessment of Letort Spring Run habitat was conducted on March 5 and March 9, 2021. The assessment protocol that was followed is utilized by the Pennsylvania Department of Environmental Protection (DEP).

Since the Letort is a low gradient stream a low gradient stream protocol was chosen for the assessment. It involves the assessment and scoring of nine parameters each with a possible score ranging from 1 to 20 with 20 being the best. The highest possible score would be 180.

The matrix of parameters that are looked at during the assessment is based on physical characteristics of the stream and the land surrounding the stream. Both instream and surrounding land conditions will have a limiting effect on quality and quantity of habitat available for aquatic biological communities. Even though the quality (chemical composition) of the water flowing through a reach may be good the quality of the habitat (aquatic and terrestrial) may be limiting the full potential of the community.

The resulting scores for the various reaches show how that particular reach compares to a "perfect" low gradient stream and where improvements can be made. It also shows how each reach scores relative to other reaches. It is

Figure 5: Photo of Robert Schott during habitat assessment at the Frey/Tiley Tract. Historically this a rea had two sink holes repairs in the last 15 years.

also important to look at each individual parameter to understand how the total score was derived or what parameter(s) are limiting the reach from its full potential.

Figure 6: Upstream of Vince's Meadow. This area is loaded with sediment and has reed canary grass growing into the stream corridor.

The habitat assessment was conducted on the upper Letort from Rt. 81 upstream to Rt. 34 and also included the unnamed tributary or East Branch which flows through the property owned by the Central Pennsylvania Conservancy (CPC). Due to differing flow regimes and land use it was initially thought that the assessment should be broken down into 3 reaches: Rt. 81 to upstream to the confluence of the East Branch and Bonny Brook Branch, the East Branch, and the Bonny Brook Branch upstream to Rt. 34. Upon further discussion and conditions in the field the assessment was

broken down into a total of 8 reaches. Habitat scores ranged from a low of 89 for Reach 1

(upper section) on the Bonny Brook Branch to a high of 144 for Reach 4 (lower section) on the East

Branch. The main stem had an average score of 138. The major problems on the main branch are excessive sedimentation in the lower 80% of the section

and channelization and bridge crossings in the upper reach through the Union Quarries property.

The upper reach of the Bonny Brook branch is completely anomalous to all the other reaches that were assessed due to excessive sediment, shallow water, sections of unstable banks, and overall lack of good habitat. After receiving abundant spring flow input the lower reach of the Bonny Brook branch is vastly improved although a large percentage of the reach is very wide and shallow providing poor habitat for larger fish.

Figure 7: Turtle basking in the sunlight during habitat assessment study.

The East Branch which is now owned by the CPC flows through a former watercress farm. It is plagued by a number of issues. Much of the reach had been moved and channelized in the past to

allow for flow around and diversion through the cress beds. Excessive sedimentation is present due to erosion from a steep bank along a bordering road and past operations on the cress farm. Stream bank vegetative protection is marginal along some sections and the overall riparian zone is narrow due to the presence of the old cress beds, bordering roads, and rail trail. The lower reach of the East Branch is downstream from the former cress farm and possesses a deep meandering channel with optimal habitat conditions.

Please see full Habitat Assessment Report and data sheets in Appendix C.

Table 1. Letort Spring Run habitat assessment reaches and habitat scores.

Reach	Habitat Score
Main Letort, Reach 1	141
Main Letort, Reach 2	135
Bonny Brook Branch, Reach 1	89
Bonny Brook Branch, Reach 2	138
East Branch, Reach 1	127
East Branch, Reach 2	100
East Branch, Reach 3	114
East Branch, Reach 4	144

Letort Spring Run Habitat Study

Aquatic organism passage (stream crossings)

Aquatic organism passage is a term used to determine if there is stream continuity through structures that cross waterways such as culvert pipes and bridges. It is important that bank margins and substrate are present and stable throughout these structures.

When stream flow is constricted through structures that are smaller than bankfull width, the water velocity increases and creates hydraulic head pressure. This can create scour holes inside the structure and at the outfall of the structure. If the stream structure has a bottom, these flows can flush material out, creating a bare bottom for the pipe, which decreases habitat and bank margins through the culvert as well as decreases the lifespan of metal structures.

Evaluation methodology was used from trainings through the Center for Dirt and Gravel Roads training on stream culverts which uses the North American Aquatic Connectivity Collaborative methodology.

Stream crossings were evaluated during the habitat study. Structures include bridges and round pipe culverts on spring tributaries that come into the Letort. All of the bridges did allow for aquatic organism passage. The culvert pipes still allow for aquatic organism passage, but would be hard for wildlife to pass through due to increased flow velocities. No structures were found to be perched that would create a barrier for aquatic organism passage.

Figure 8: Bonny Brook Road bridge downstream of Trego's meadow. The bridge narrows the stream corridor here but still allows aquatic passage and cover for fish. The constricted flow increases velocity under the bridge which could be a be nefit downstream by exposing stream bed gravel.

Aquatic life: Macroinvertebrates

The Pennsylvania Fish and Boat Commission and the Pennsylvania Department of Environmental Protection both collect data on aquatic life. PA DEP biologists collect macroinvertebrate samples at the Bonny Brook Road Bridge location. Below is a chart compiled from DEP's reports from 2000, 2005, 2006, 2007, 2008, and 2016. All reports used the Limestone testing protocol except for 2000 and 2005. Reports 2005-2016 all show that the macroinvertebrate community is classified as good condition. 2005 shows poor quality, but also used the Freestone protocols.

Macroinvertebrate Data:

Station ID	20160330- 1030- ablascovic	20080505- 0270-WQN	20080331- 0945-amywilli	20070312- 1015- mbrickner	20060413- 0270-WQN	20050427- 0270-WQN	20000419- 0270-WQN22	
Method	Limestone	Limestone	Limestone	Limestone	Limestone	Freestone	Freestone	
Year	2016	2008	2008	2007	2006	2005	2000	
Condition	Good	Good	Good	Good	Good	Good	Poor	
Location	Downstream Bonny Brook Rd	Downstream Bonny Brook Rd	Upstream Bonny Brook Rd	Downstream Bonny Brook Rd	Downstream Bonny Brook Rd	Downstream Bonny Brook Rd	Downstream Bonny Brook Rd	
Taxa								Common Name
Antocha	0	0	2	0	0	0	0	cranefly
Baetis	1	10	2	14	4	9	1	mayfly
Caecidotea	2	0	0	0	0	0	0	aquatic sow bug (isopod)
Cambaridae	0	0	0	0	0	0	1	crayfish
Ceratopsyche	0	0	3	0	0	0	0	caddisfly
Chelifera	0	0	0	1	0	0	0	fly (Diptera)
Cheumatopsyche	2	0	2	0	0	0	0	caddisfly
Chironomidae	53	86	47	47	70	30	5	midge (Diptera)
Ephemerella	41	4	17	11	11	17	0	mayfly
Gammarus	113	131	128	118	100	144	115	scud (amphipod crustacean
Hemerodromia	0	0	1	0	0	0	0	dance fly
Hydracarina	0	7	8	2	30	7	0	water mites
Hydrobiidae	0	51	0	0	0	0	0	mud snails
Hydropsyche	2	0	0	0	0	0	0	caddisfly
Hydroptila	0	0	0	0	0	1	0	caddisfly
Lepidostoma	0	0	1	2	1	0	0	caddisfly
Lirceus	10	0	20	39	27	7	26	aquatic sow bug (isopod)
Lymnaeidae	0	0	0	0	1	1	0	mud snails
Nematoda	1	0	0	10	0	0	0	roundworm
Neophylax	2	0	1	0	0	0	0	caddisfly
Neoplasta	0	1	0	0	0	0	0	dance fly (Diptera)
Ochrotrichia	0	19	0	0	2	1	0	caddisfly
Oligochaeta	2	2	18	2	26	1	0	aquatic worm
Optioservus	9	0	42	8	16	9	34	riffle beetle
Oulimnius	0	6	0	0	0	0	14	riffle beetle
Oxyethira	0	0	0	1	0	0	0	caddisfly
Paraleptophlebia	2	0	0	0	3	0	0	mayfly
Physidae	0	5	0	1	0	3	4	bladder snail
Planorbidae	0	0	0	1	0	1	0	ramshorn snail
Polycentropus	2	0	0	0	0	0	0	caddisfly
Simulium	9	0	2	5	0	0	0	black fly (Diptera)
Sphaeriidae	0	0	0	0	3	0	0	bivalve mullusc
Tubificidae	0	0	0	0	10	1	0	aquatic worm
Turbellaria	0	7	2	3	3	5	0	flatworm
Viviparidae	0	0	0	1	0	0	0	snail

Figure 9: Data compiled from PA DEP, link: <u>http://www.depgis.state.pa.us/macroviewer/index.html</u>. Samples taken near the Bonny Brook Road bridge. See Figure 2 for mapped locations.

Figure 12.b.: PA DEP Macroinvertebrate Taxa Viewer, zoomed into data collection sites. http://www.depgis.state.pa.us/macroviewer/index.html

Aquatic Life: Fishes

PA Fish and Boat Commission biologists study the native trout populations and collect fish surveys. The last study was completed in 2019. Historical data is provided from 1995, 1997, and 2003. Fish species include American eel, blacknose dace, brown trout, pearl dace, and white sucker. American eel and blacknose dace were rare at this site and brown trout, pearl dace were abundant, and white suckers were common.

Historical data focused on trout populations of brown trout and rainbow trout. By 2003, most of the rainbow trout were no longer stocked and there is no longer a rainbow trout population, which has reduced competition for the brown trout. Today, brown trout have an established a natural reproducing population that has become known throughout the world.

Table n. Fish collected from Letort Spring Run at site rivermile 5.9 with Site Latitude 401044 Longitude 771112 DMS or 40.178923 -77.186745 DD using Electrotowboat gear. Site established 8/26/2019 by Fisheries Management Area 7. This site is currently located within section 2, 07B.

Common Name	Scientific Name	Coarse Abundance
American Eel	Anguilla rostrata	Rare(<3)
Blacknose Dace	Rhinichthys atratulus	Rare(<3)
Brown Trout	Salmo trutta	Abundant (>100)
Pearl Dace	Margariscus margarita	Abundant (>100)
White Sucker	Catostomus commersonii	Common (26-100)

FABLE	1. COMP <i>I</i> FOR I BONNY BROWN	ARISON ETORT YBROOK I TROUT	OF SPR QUA (B	A TWO PA ING RUN RRY STAT T) & RAI	SS MA BY EL ION I NBOW	RK/RE(ECTRO) N 1995 TROUT	CAPTURE FISHING 5, 1997 (RT)	RUN THE : AND :	(M+C-R) 300 METER 2003.
			199	95	19	97	21	003	
	SIZE								-
	(Inches)	H	вт	RT	BT	RT	BT	RT	
	1								
	2						2		
	з	1	15	12	10	z	99	11	
	4	5	70	22	101	29	159	9	
	5	2	27	5	92	з	22		
	6		2		9		10		
	7		з	2	6		25		
	8	1	16	3	15		27		
	9	1	16		16	6	18		
	10	1	16		13	4	9		
	11	1	10	2	13	1	7		
	12	1	16		11	2	8		
	13		9	1	9	з	6		
	14		3		6		1		
	15		2		5		2		
	16		3		2		1		
	17		1		1				
	18		1						
	19								
	20								
	21								
	22		1						
	23								
	24								
	25								
	26								
	TOTALS	2	11	47	309	50	396	20	
11 ÷ = + -	ninel Derro	-l l-	0 4 F	- /IIndon	0				.
nisto	rical sonny	nrook	5100	e (union	Quarr	y) ca	poured b	rown	crout
from	2-16 inches	3. Goo	d s:	ıze distı	ributi	on wi	th multi	.ple a	ade classes.

from 2-16 inches. Good size distribution with multiple age classes Very strong 2003 year class of brown trout. Some reduction from previous surveys in numbers of brown trout 10 inches and larger. A few rainbow trout at 3 - 5 inches. Site had water cress cover and areas of clean gravel.

Invasive Plant Species

Like many of our natural areas, this section of the Letort also has many invasive plant species. Invasive species thrive in the same environment as our native plant species and can out-compete most native species by growing densely and choking out native plants. Invasive species also leaf out early in the growing season, which gives them a head start over native plants. Invasive species also interrupt the food web of organisms that depend on ecosystems within the stream corridor.

An invasive species survey was completed on May 3, 2021, by John Schwartzer, Service Forester with the Department of Conservation and Natural Resources and Lori Glace of the Conservation District. Species reported below were found along the Letort Nature Trail and riparian area.

Invasive Plant Species Present along Letort Nature Trail								
Common Name	Scientific Name	Туре	Threat Rank					
iris (yellow)	Iris pseudacorus	flower	2					
chickweed (common)	Stellaria media	forb	3					
Dames rocket	Hesperis matronalis	herb	2					
deadnettle	Lamium purpureum L.	forb	n/a					
garlic mustard	Alliaria petiolata	herb	1					
greater celandine	Chelidonium majus	forb	2					
wineberry	Rubus phoenicolasius	forb	n/a					
reed canary grass	Phalaris arundinacea	grass	2					
autumn olive	Elaeagnus umbellata	shrub	2					
buckthorn (common)	Rhamnus cathartica	shrub	1					
bush honeysuckle	Lonicera spp.	shrub	1					
Japanese honeysuckle	Lonicera spp.	Shrub	1					
multiflora rose	Rosa multiflora	shrub	1					
privet	Ligustrum spp.	shrub	2					
white mulberry	Morus alba	shrub	3					
Norway maple	Acer platanoides	tree	2					
tree of heaven	Ailanthus altissima	tree	1					
English ivy	Hedera helix	vine	3					
Oriental bittersweet vine	Celastrus orbiculatus	vine	1					

Invasive plants found in this area include:

Department of Conservation and Natural Resources Invasive Plant Threat Ranking

Rank 1- Severe Threat. Exotic plant species that possess characteristics of invasive species and spread easily into native plant communities and displace native vegetation. Includes species that are or could become widespread in Pennsylvania.
Rank 2- Significant Threat. Exotic plant species that possess characteristics of invasive species but are not presently considered to spread as easily and aggressively into native plant communities as those species listed as Rank 1. Rank 3-Lesser Threat. Exotic plant species that spread in or near disturbed areas, and are not presently considered a major threat to undisturbed native plant communities. Watch List- Exotic plant species that are severe problems in surrounding states but have not been widely reported in Pennsylvania, OR may naturalize and become a problem in the future and require more monitoring.

The East Branch section owned by the Central Pennsylvania Conservancy has been very active at treating invasive species on their property in partnership with the Letort Stewards, which includes chemical

treatment, controlled burns, and then planting native plant forbs, shrubs, and trees over the last few years. Treatment can take multiple years to fully control invasive threats.

Between Otto's Meadow and the quarry were several mature Tree-of-Heaven trees that are a high priority to treat and remove due to their hosting capabilities for the Spotted Lantern Fly.

Cumberland Valley Trout Unlimited is also very active in removing reed canary grass (*Phalaris arundinacea*), which is present in both the riparian area and the waterways. It can choke the flow of water and will trap sediment. This contributes to the silty stream beds, which causes slowing water, more sediment to drop out, and promotes more grass growth in the stream corridor. During the survey, it was noted the abundance of Canada geese that have moved in between Otto's Meadow and I-81 and were eating the reed canary grass.

Figure 12: Oriental bittersweet damaging a native hackberry tree.

Figure 13: Reed canary grass growing into the main corridor of the Letort. View is downstream of the railroad bridge on the Letort Nature Trail by Otto's Meadow.

Letort Spring Run Water Quality Monitoring Program

The Alliance for Aquatic Resource Monitoring (ALLARM) at Dickinson College has been monitoring the water quality of the Letort since 1993. ALLARM has a partnership with the Letort Regional Authority (LRA) to monitor 10 sites in the Letort. Each month, ALLARM provides results from these testing locations to LRA.

Parameters include: water temperature, dissolved oxygen, conductivity, total dissolved solids, nitrate, orthophosphate, and turbidity. The below chart was pulled in October, 2020 and the box in red are located within the Coldwater Conservation Plan study area.

All data samples collected by ALLARM fall within the ideal values recommended by the United States Environmental Protection Agency water quality standards.

Water Quality Results

Letort Spring Run Monitoring Program

Monthly Results: October 13, 2020										
Site Water Dissolved # Temp Oxygen		рН	Conductivity	Total Dissolved Solids	Nitrate mg/L	Ortho- phosphate	Turbidity			
	°C	mg/L	pH units	μS/cm	mg/L	NO ₃ -N	mg/L PO ₄	NTU		
1	11.5	9.66	7.6	591	420	2.7	<0.02	1.4		
2	11.8	9.93	7.9	531	375	3.0	<0.02	1.1		
3	11.9	9.86	7.7	570	406	2.8	0.04	0.8		
5	12.0	10.57	7.8	576	410	2.8	<0.02	2.2		
6	12.1	9.78	7.9	574	409	3.1	0.05	2.8		
9	12.7	10.31	7.8	652	460	2.3	<0.02	1.3		
10	12.8	10.17	8.0	630	448	1.9	0.03	2.2		
Ideal	Values	> 7.0	6 – 9	< 1100	< 750	< 5.0	< 0.10	< 10.0		

Site	Site Name	Site ID
1	LSRNT footbridge	LETSPRRUN 6.51
2	Trib - LSRNT footbridge	UNTLETSPRRUN 0.01
3	LSRNT RR bridge	LETSPRRUN 6.24
5	LeTort Park RR bridge	LETSPRRUN 5.05
6	Webster Street	LETSPRRUN 4.05
9	Shady Lane	LETSPRRUN 1.53
10	Mill Road	LETSPRRUN 0.04

Site Averages: 2015 – 2019													
Site #	Water Temp	Dissolved Oxygen	рН	Conductivity	Total Dissolved Solids	Nitrate mg/L	Ortho- phosphate	Turbidity					
	°C	mg/L	pH units	μS/cm	mg/L	NO₃-N	mg/L PO ₄	NTU					
1	11.6	11.0	7.7	587	400	4.4	0.07	2.0					
2	12.0	11.3	8.0	547	370	4.3	0.06	2.7					
3	11.8	11.2	7.8	588	400	4.2	0.06	2.4					
5	12.4	12.1	8.0	595	410	3.9	0.06	3.2					
6	12.2	11.6	8.1	599	410	3.9	0.06	4.0					
9	12.7	11.9	8.0	678	470	3.2	0.07	4.1					
10	12.9	11.2	8.1	712	490	3.0	0.07	4.7					

Alliance for A	Aquatic Resource	Monitoring	(ALLARM)	@ Dickinson	College: Ser	ntember 2020
Amarice for A	nyualic nesource	wontoning		@ DICKINSON	conege, ser	

Page 1

Monthly	Averages:	2015 - 2019	
The second	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2010 2010	

Month	Water Temp	Dissolved Oxygen	рН	Conductivity	Total Dissolved Solids	Nitrate	Ortho- phosphate	Turbidity
	°C	mg/L	pH units	μS/cm	mg/L	NO ₃ -N	mg/L PO ₄	NTU
Feb	9.3	12.8	8.1	550	460	4.6	0.08	5.5
Apr	13.3	13.0	8.0	616	410	3.8	0.07	3.8
Jun	13.6	11.0	7.8	595	410	3.9	0.08	2.2
Aug	14.1	9.2	7.9	622	430	3.5	0.06	3.5
Oct	14.3	11.0	7.9	599	410	4.0	0.07	3.1
Dec	7.9	11.4	8.0	596	410	3.8	0.08	3.5

Alliance for Aquatic Resource Monitoring (ALLARM) @ Dickinson College; September 2020

Page 2

The below chart was summarized historical data from samples collected by R. Schott while he worked for PA DEP and were analyzed by DEP's lab in 1990 and 2008. Historical samples are comparable to ALLARM's data. Please see the chart below:

Parameter	Letort Spring East Branch		Letort Spring Run West Branch	
	1990	2008	1990	2008
Alkalinity	200	210.6	220	231.6
Aluminum		<0.2		<0.2
Calcium		86.3		87.5
Copper**		<4.0		<4.0
Dissolved Oxygen	7.7		8.7	
Hardness	222	262	229	292
Iron**		20		<20.0
Lead**		<1.0		<1.0
Magnesium		11.3		17.8
Manganese**		<10.0		<10.0
Nickel**		<50.0		<50.0
Nitrogen (Total)		7.22		7.51
Nitrogen (Ammonia)	<0.02	<0.02	<0.02	<0.02
Nitrogen (Nitrate)	7.26	7.28	6.29	7.29
Nitrogen (Nitrite)	<0.04	<0.04	<0.04	<0.04
pH (Units)	7.1	7.8	7.17	7.6
Phosphorus (Total)	0.02	<0.010	<0.020	<0.010
Phosphorus (Orthophosphate)		<0.010		<0.010
SpecificConductivity				
(umhos/cm)	412	503	452	551
Sulfate		19.9		21.9
Temperature (c)	10.8		10.5	
Temperature (F)	51.4		50.9	
Total Organic Carbon	<1.0		<1.0	
Zinc**		<10.0		<10.0

Results expressed as parts per million unless indicated otherwise.

**Results expressed as parts per billion.

Figure 14: Letort Spring Run water quality data collected by PA DEP in 1990 and 2008.

Stream Soil Phosphorus Study

Collected by Cumberland Valley Trout Unlimited and analyzed by Analytical Laboratory Service (ALS) Environmental on July 6, 2018.

Please see Appendix D for full report.

Summary:

3 sample locations were taken on July 6, 2018. Site locations include Route 34 Bridge, Luciano's property, and Spring Garden Street. Samples were analyzed using standards set by the Environmental Protection Agency protocol 365.1 for Determination of Phosphorus by Semi-Automated Colorimetry.

Sediment Level Summary

Site	Parameter	Results	Unit	Method
RTE 34 Bridge	Phosphorus, Total	665	mg/kg	EPA 365.1
Luciano's	Phosphorus, Total	403	mg/kg	EPA 365.1
Spring Garden	Phosphorus, Total	674	mg/kg	EPA 365.1

Levels from this study are high. According to Penn State University's Soil Test Recommendations Handbook For Agronomic Crops, optimum phosphorus rates for agronomic crops range from 30-50 ppm (parts per million) for grain crops. Once phosphorus levels exceed optimum, it is not recommended to apply excess phosphorus to crops.

Excess phosphorus can lead to additional plant and algal growth in waterways. When algal blooms take over, it is called Eutrophication and can cause a severe lack of dissolved oxygen. The Letort does have an abundance of plant growth within its waterways.

As a side note, orthophosphate in the water column is within the recommended EPA guidelines (see page 22 for results from ALLARM's studies).

Additional research and study design is recommended to compare phosphorus levels in stream sediment. While doing research for this plan, similar studies and standards were incompatible or unavailable. Bringing additional partners on board are also recommended.

Areas of Concern and Opportunity

This section relates directly to the Habitat Study. Please refer to Appendix C for additional detail and photographs.

Several areas of concern were identified during the habitat study. Overall threats to the main stem of the Letort include excessive sedimentation, shallow water, sections of unstable banks, and overall lack of good habitat. Additional threats include sediment/nutrient load, threats of sink holes, lack of riparian

areas, and invasive plant species in the riparian zone areas.

The Bonny Brook Branch (west branch) has a lot of the same problems as the main stem, with excessive sedimentation, unstable banks, some areas are over-widened and overall lack of habitat. However closer to Route 34 the water level is shallower, incised flow, unstable stream banks, and laden with sediment.

The East Branch was formerly a watercress farm and most of this stream channel has been manipulated through the years through channelization and diversion into cress beds. This section has excessive sedimentation, overall

Figure 15: Upstream of Railroad Bridge on Letort Nature Trail.

riparian zone is narrow due to the former watercress beds, bordering roads, and rail trail.

Figure 16: Over-widened section of Trego's Meadow upstream of Bonny Brook Road.

Sediment deposition chokes out gravel areas that are critical to the wild trout populations in the Letort. Trout require loose gravel to build redds. Redds are shallow gravel depressions in circular or oval shapes where females lay their eggs and then males fertilize the eggs. Without loose gravel available, this crucial life cycle stage cannot be completed. Lack of clean gravel is also detrimental to macroinvertebrates for their life cycles as well, which provides additional food to trout and other fishes in the Letort.

Over-widening of the channel causes water to spread out over a larger area. This causes the water velocity to slow down. As water flow slows down, sediment will drop out of the water column. Over time, sediment bars and wedges form, which will allow for plants to colonize the area. These plants will trap additional sediment and cause more water displacement into the riparian zones. Slowing water and encroachment into the bank margins will cause warmer temperatures which will deplete the available dissolved oxygen that is

required by aquatic organisms to thrive.

Sediment and reed canary grass growth will displace water by choking the channel. As water is pushed into bank margins, it can form wetland areas along the stream, which changes the riparian area from being meadow conditions to a wetland system and which changes the plants that grow along the stream. This section is classified as meadow conditions in the Scenic River study and if conditions change from meadow to wetland, the Scenic River designation will have to change.

Sediment and nutrient runoff are also concerns for the Letort. Since the Letort is mostly spring fed, these nutrients can come from many sources, not only surface flow during storm events. The land use around this section of the Letort includes agriculture, commercial, and has influence from Route 34, Bonny Brook Road, and South Spring Garden Street. Nonpoint source pollution includes sediment, nitrogen, phosphorus, and petroleum products.

Sink holes have been a problem in the section below the quarry discharge to the railroad bridge on the Letort Trail. Sink holes form in Karst systems due to water slowly dissolving carbonate rock until it weakens the rock that it collapses. Sink holes cause water levels in the stream to drop until repaired or blocked.

As invasive plants choke out their native counterparts, it can change the dynamics of terrestrial insects and aquatic macroinvertebrates which affects the food chain and ecosystem of the Letort. Invasive plants cause a disruption to native populations and can greatly influence the food chain. Research from Stroud Research Center has identified that aquatic macroinvertebrates shredders would rather starve to death than eat tree-of-heaven and autumn olive leaf material. Species that have specialized food sources are displaced when invasive plants start to take over their natural environment, which can cause holes in the food web and ecosystem, especially since the Letort was recognized for the importance that terrestrial insects play on the food web of brown trout.

Recommendation Opportunities

Downstream of Route 34 to Trego's Meadow (river mile: 7.05-7.55)

This section is entrenched with unstable banks and excess sediment. Remediation opportunities include bank stabilization through trout habitat structures, planting of live stakes (dogwoods/willows).

Trego's Meadow (river mile: 6.88-7.05)

Located upstream of Bonny Brook Road, this section is over-widened, bank failure, and stream banks are turning marshy. Remediation opportunities include fish habitat structures to stabilize the bank and direct water back into the center of the stream. This will also help to keep the gravel clear in this section. Random boulder placement will help to create diversity in the stream channel and will create pockets of water where trout can rest and hide.

Central Pennsylvania Conservancy Property (tributary East Branch)

Located on the east branch of the Letort, downstream of Bonny Brook Road, this section does have a restoration plan that is currently being pursued. Remediation opportunities include recovery of the original stream corridor, invasive species removal, and native plantings and expansion of riparian zone buffers where possible.

Union Quarries (discharge river mile: 6.44)

The quarry property is active and part of their operation has a constant drawdown of ground water that is returned to the Letort by large pumps. Dust is produced during stone crushing, mining of the limestone, and by truck traffic that goes into the quarry to be loaded. There is runoff from the access road onto the Letort Trail that is causing erosion that flows into the Letort. Remediation opportunities include planting native trees and shrubs to create a wind-break to collect dust from falling into the Letort. Remediation opportunities can include a water bar or broad-based dip to prevent water from flowing onto the Letort Trail and would then also allow for a buffer before runoff flows into the Letort.

Area below quarry discharge (river mile 6.35-6.44)

This section is located below the quarry's discharge point. In order for the quarry to harvest rock located below ground water, there is a continuous pump to remove water from where they are working to return it to the Letort. Below the discharge there were several sections that had sink holes that developed and were repaired. This area also has observation wells that are monitored. Currently there are no known sinkholes, but this is a section of concern to monitor for additional sinkholes. Remediation opportunities include immediate notification to state agency partners to obtain necessary emergency permits for immediate repair if a sink hole opens.

Otto's Meadow (6.27-6.24)

This section is located downstream of the railroad bridge on the rail trail between the Quarry and I-81. Historically, this area had cattle on pasture. Today it is still retaining meadow conditions, but has not had cattle for many years. The stream is over-widened here and does make a bend to go into the railroad bridge and then another bend downstream of the bridge. Reed canary grass is also encroaching on the stream corridor, which is causing stream banks to turn from meadow to wetland. Remediation opportunities include trout habitat structures to help direct the water back into the center of the stream and narrow the main channel. Random boulders would also help provide more cover and diversity for trout. Removal of reed canary grass is on-going and is recommended to continue.

Vince's Meadow (river mile 6.1-6.24)

Located between Otto's Meadow and I-81, this section of stream is choked with sediment which has allowed reed canary grass to encroach on the stream. This section of stream also has several Willow trees that are dying. Remediation opportunities include installation of trout habitat structures to help increase the flow of water to help reveal gravel substrate. Recommend to replant trees where large willow trees have died.

Invasive plants (Quarry intersection to I-81) (river mile 6.32-6.45)

There are several species of concern from the Invasive plant survey conducted in early May. Please refer to chart on page 21. Remediation Opportunities include removal of Tree-of-heaven (*Ailanthus altissima*), located south of the rail road bridge, is a high priority to treat and remove due to its hosting abilities for

the spotted lanternfly. Other high ranking common species include honeysuckle (*Lonicera spp.*), multiflora rose (*Rosa multiflora*), autumn olive (*Elaeagnus umbellate*), garlic mustard (*Alliaria petiolate*), and Oriental bittersweet (*Celastrus orbiculatus*). Other general recommendations: start with invasive tree removal, then shrubs, then undergrowth. Recommend planting native plants where invasive plants are removed. This treatment will take several years to fully become successful and will have to be spot treated continuously.

Challenges:

Remediation work will have several steps before projects become shovel-ready. Since most of this section of the Letort is both classified as an Exceptional Value for water quality by Chapter 93 and is a designated Scenic River, there are additional steps that will be need to be planned for during project design to ensure that work on the Letort will maintain the current water quality standards.

Potential project planning and permitting could include:

All projects that propose habitat improvements and in-stream work will have either Pennsylvania Fish and Boat Commission or Pennsylvania Trout Unlimited habitat specialists consult with work to be performed. Low gradient spring creeks need special considerations when trout habitat structures and remediation practices are designed.

Chapter 105 Water Obstruction and Encroachment Permits reviewed and issued by Pennsylvania Department of Environmental Protection. Since the Letort is an Exceptional Value stream through this section, a site meeting is recommended to discuss project parameters to verify which permitting pathway would be taken. Certain work is not allowed under the General Permit conditions but may be acceptable through Waiver 16 or could be permitted through a joint permit or small projects permit. This really depends on the scope of work and any direct impact to adjoining wetlands. All Chapter 105 permits would be submitted to PA DEP for review and approval since Cumberland County Conservation District is not delegated to review these plans. Depending on the project scope, the U.S. Army Corps of Engineers should also be included in pre-design site meetings.

The Pennsylvania Natural Diversity Index (PNDI) will need to be included in all permit work. The PNDI is an index compiled by the Pennsylvania Natural Heritage Program (PNHP) which is a partnership through the Pennsylvania Department of Conservation and Natural Resources (DCNR), the Pennsylvania Fish and Boat Commission (PFBC), the Pennsylvania Game Commission (PGC), and Western Pennsylvania Conservancy in partnership with the U.S. Fish and Wildlife Service. The PNDI compiles location and status of important ecological resources. If a species comes back as threatened or endangered, the respective agency will review information provided about the project and will provide additional guidance, depending on the species threat level and proposed work.

Future Funding Opportunities and/or Potential Partners

There are a variety of potential funding opportunities and potential project partners. Project partners can help the success of the Letort in several ways including technical assistance, permitting help, grant writing and administration, and funding opportunities.

Several key partners include but are not limited to:

Alliance for Aquatic Resource Monitoring Carlisle Borough Central Pennsylvania Conservancy Chesapeake Bay Foundation Clean Water Cumberland Coldwater Heritage Partnership Cumberland County **Cumberland County Conservation District** Cumberland Valley Trout Unlimited Letort Regional Authority Letort Stewards Penn State Extension Watershed Stewards Pennsylvania Council of Trout Unlimited Pennsylvania Department of Environmental Protection Pennsylvania Fish and Boat Commission Pennsylvania Department of Conservation and Natural Resources South Middleton Township

Funding opportunities:

Grant Resources				
Source	Grant Program	Min Amt	Max Amt	Match Requirement
Cold Water Heritage Partnership	Implementation Grants	n/a	\$ 8,000.00	1:1 Match
Cumberland County	Land Partnership Grants	n/a	\$ 50,000.00	1:1 Match
Izaak Walton League		n/a	n/a	n/a
National Fish & Wildlife Foundation	Small Watershed Grants	\$ 20,000.00	\$ 500,000.00	1:3 Match
National Fish & Wildlife Foundation	Local Government Implementation Grants	\$ 20,000.00	\$ 200,000.00	15%
PA American Water	Environmental Grants	n/a	\$ 10,000.00	n/a
PA DEP	Growing Greener Plus	n/a	n/a	15%
PA Dept. of Community & Economic Development	Watershed Restoration and Protection Program	n/a	\$ 300,000.00	15%
PA Dept. of Community & Economic Development	Greenways, Trails, and Recreation Program	n/a	\$ 250,000.00	15%
PA Foundation of Watersheds	Project Grants	n/a	\$ 2,000.00	n/a
PennDOT	Mitigation Funds	n/a	n/a	n/a
South Mountain Partnership	Mini-Grants	\$ 2,500.00	\$ 15,000.00	1:1 Match

Summary and Conclusions

In conclusion, the upper reach of the Letort is still an exceptional resource in Cumberland Valley but it does need some help to improve habitat conditions to ensure the legacy that its reputation boasts of. In general, remediation recommendations include narrowing of the stream channel where is has become over-widened through bank erosion, additional trout habitat structures to keep sediment from choking stream gravel, and removing invasive species along the stream corridor.

Next steps include design and implementation of projects sites identified in the plan, which will include pre-design meetings with landowners, partners, and state and federal agency personnel. Public updates will be given at Cumberland Valley Trout Unlimited meetings and will include educational outreach via their website and newsletter: Tight Lines.

We would like to thank the many partners that helped with their expertise, local knowledge, reviews, and data. Thank you to the Cumberland Valley Trout Unlimited Coldwater Conservation Plan Committee for their many hours of review, edits, and time. This was a little challenging doing everything remotely while complying with the pandemic restrictions, which did allow a time extension which was needed for the field work portion of this plan.

Special Thank You

CVTU Coldwater Conservation Plan Committee

Mark Albano, Eric Naguski, John Leonard, Robert Schott, Ken Okorn, Gerry Kerstetter, Neil Sunday, John Zazworsky, Tom Baltz, and Keith Tyler

Alliance for Aquatic Resource Monitoring

Julie Vastine & Jinnie Monismith

Central Pennsylvania Conservancy

Benjamin Mummert

Letort Regional Authority Andy Parker

Landowners Joe Luciano, Steven Capone, and Rocky Stump

References

- Alliance for Aquatic Organism Monitoring. (October 13, 2020). *Water Quality Results: Letort Spring Run Monitoring Program.*
- Alliance for Aquatic Organism Monitoring. (September 2020). ALLARM Summary Report.
- Angus Phillips. (July 5, 1981). *The Killing of the LeTort Trout: Poisons Decimate Angling Sharing*. The Washington Post. Retrieved from <u>https://files.podio.com/952081218</u>.
- Central Pennsylvania Conservancy. Letort Spring Garden Preserve. Retrieved from https://centralpaconservancy.org/public-access-properties/letort-spring-garden-preserve/
- Commonwealth of Pennsylvania. (March 30, 1988). *Letort Spring Run Scenic Rivers Act.* Retrieved from <u>https://www.legis.state.pa.us/WU01/LI/LI/US/PDF/1988/0/0042.PDF</u>
- Commonwealth of Pennsylvania. *Title 25, Chapter 93 Water Quality Standards*. PA Code. Retrieved from <u>https://www.pacodeandbulletin.gov/Display/pacode?file=/secure/pacode/data/025/chapter93/</u> <u>chap93toc.html</u>
- Cumberland County. Cumberland County. Retrieved from: https://www.ccpa.net/
- Cumberland County. Cumberland County Conservation District. Retrieved from https://www.ccpa.net/cd
- Cumberland Valley Trout Unlimited. Cumberland Valley Trout Unlimited. Retrieved from https://www.pacvtu.org/
- Eugene Marcri. Jr. (July 2, 2005). *The Ecology of a Spring Creek*. Limestoner. Retrieved from <u>https://Limestoner.com</u>
- Jerry Kerstetter. (May 2018). A Natural Flowing Stream. Tight Lines Newsletter. Retrieved from https://www.pacvtu.org/wp-content/uploads/2018/05/TightLines0518.pdf
- Jerry Kerstetter. (June 2017). *How the Letort has Changed: My Recollections of 40 years*. Tight Lines Newsletter. Retrieved from <u>https://www.pacvtu.org/wp-content/uploads/2017/09/TightLines-0917.pdf</u>
- Jerry Kerstetter. (September 2017). *The Letort (Part 2)*. Tight Lines Newsletter. Retrieved from <u>https://www.pacvtu.org/wp-content/uploads/2017/09/TightLines-0917.pdf</u>
- John Allen. (March/April 2019). *Letort Spring Run*. Pennsylvania Angler & Boater. Retrieved from <u>https://www.fishandboat.com/Transact/AnglerBoater/AnglerBoater2019/Documents/2019-0304ma05-letort.pdf</u>.
- Letort Regional Authority. Letort Nature Trail. Retrieved from https://letort.org/nature-trail/
- Letort Regional Authority. Letort Regional Authority. Retrieved from https://letort.org/
- Penn State University College of Agricultural Sciences, Agricultural Analytical Services Laboratory. (03.2021) Soil Test Recommendations Handbook For Agronomic Crops. Retrieved from https://extension.psu.edu/programs/nutrient-management/educational/soil-fertility/handbook
- Pennsylvania Department of Conservation and Natural Resources. *DCNR Invasive Plant List*. Retrieved from <u>file:///C:/Users/Iglace/Downloads/dcnr_20033786%20(2).pdf</u>

- Pennsylvania Department of Conservation and Natural Resources. Scenic Rivers. Retrieved from <u>https://www.dcnr.pa.gov/Conservation/Water/RiversConservation/ScenicRivers/Pages/default.</u> <u>aspx</u>
- Pennsylvania Department of Environmental Protection (2018). Assessment Methodology for Rivers and Streams. Retrieved from

https://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation/Water QualityPortalFiles/Methodology/2015%20Methodology/Assessment_Book.pdf

- Pennsylvania Department of Environmental Protection. (2020). 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report. Retrieved from <u>https://www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/IntegratedWatersReport/P</u> <u>ages/2020-Integrated-Water-Quality-Report.aspx</u>
- Pennsylvania Department of Environmental Protection. Macroinvertebrate Taxa. Retrieved from <u>https://gis.dep.pa.gov/macroviewer/index.html</u>
- Pennsylvania Department of Environmental Protection. Water Obstructions and Encroachments. Retrieved from

https://www.dep.pa.gov/Business/Water/Waterways/Encroachments/Pages/default.aspx

- Pennsylvania Department of Environmental Resources. (April 1987). Letort Spring Run Scenic River Study.
- Pennsylvania Fish and Boat Commission. (August 25, 2003). 2003 Biologist Report, Letort Spring Run, Cumberland County. Retrieved from <u>https://pfbc.pa.gov/images/fisheries/afm/2003/7_09-</u> <u>17letort.htm</u>
- Pennsylvania Natural Heritage Partnership. Pennsylvania Natural Diversity Index. <u>https://www.naturalheritage.state.pa.us/</u>
- Tammie Gitt. (October 2, 2017). *Explanations differ on causes for the LeTort Spring Run plant kill.* The Sentinel. <u>https://cumberlink.com/news/local/explanations-differ-on-causes-for-letort-spring-run-plant-kill/article_951922ff-e5a0-58dd-b4f2-6a5dca5e9d14.html</u>.
- Tom Miller. (June 2017). *Letort Sinkhole Repair*. Tight Lines Newsletter. Retrieved from <u>https://www.pacvtu.org/wp-content/uploads/2017/06/TightLines-0617.pdf</u>
- United States Geologic Survey. StreamStats: Streamflow Statistics and Spatial Analysis Tools for Water-Resources Applications. Retrieved from <u>https://www.usgs.gov/mission-areas/water-</u> <u>resources/science/streamstats-streamflow-statistics-and-spatial-analysis-tools?qt-</u> <u>science_center_objects=0#qt-science_center_objects</u>
- United States Geologic Survey. USGS 01569800 Letort Spring Run near Carlisle, PA. Retrieved from <u>https://www.usgs.gov/mission-areas/water-resources/science/streamstats-streamflow-</u> <u>statistics-and-spatial-analysis-tools?qt-science_center_objects=0#qt-science_center_objects</u>.
- United States Environmental Protection Agency. *Method 365.1, Revision 2.0: Determination of Phosphorus by Semi-Automated Colorimetry.* Retrieved from https://www.epa.gov/sites/default/files/2015-08/documents/method/365-1/1993.pdf.

Appendices

Appendix A: Stream Stats

Streamflow Statistics and Spatial Analysis Tools for Water-Resources Applications Letort Watershed Map and Data Summary

Appendix B: Historic Discharge

U.S. Geologic Survey Historic Stream Flow Data Chart

Appendix C: Habitat Assessment

Habitat Assessment, Data Sheets, and Map

Appendix D: Stream Soil Phosphorus Study

ALS Environmental results for Total Phosphorus in soil samples conducted July 2018

StreamStats Report Letort Spring Run

Headwaters to I-81

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	8.41	square miles		
PRECIP	Mean Annual Precipitation	39	inches		
CARBON	Percentage of area of carbonate rock	100	percent		
FOREST	Percentage of area covered by forest	11	percent		
URBAN	Percentage of basin with urban development	4	percent		

A-1
Base Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	8.41	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	39	inches	33.1	50.4
CARBON	Percent Carbonate	100	percent	0	99
FOREST	Percent Forest	11	percent	5.1	100
URBAN	Percent Urban	4	percent	0	89

Base Flow Statistics Disclaimers[Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Base Flow Statistics Flow Report[Statewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	4.27	ft^3/s
Base Flow 25 Year Recurrence Interval	3.64	ft^3/s
Base Flow 50 Year Recurrence Interval	3.29	ft^3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

StreamStats

Appendix A USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

Station 01569800 Letort Spring Run Near Carlisle, PA

Historic Data

00060, Discharge, cubic feet per second

	Mean of daily mean values for each day for water year of record in, ft ³ /s (Calculation Period 1975-10-01->2009-09-30)													
Day	January	February	March	April	May	June	July	August	September	October	November	December		
1	42	47	50	64	53	46	45	37	32	35	34	40		
2	43	48	53	66	53	46	44	36	35	34	35	41		
3	43	47	52	66	53	48	44	37	32	34	35	41		
4	42	47	54	63	53	47	43	38	33	34	34	40		
5	43	48	59	63	54	47	44	37	32	34	35	43		
6	42	46	56	61	55	47	43	36	34	35	34	41		
7	42	45	55	60	53	47	43	35	36	34	34	40		
8	45	45	54	58	54	46	45	35	34	34	39	39		
9	46	44	54	60	53	45	42	35	33	43	37	39		
10	44	44	55	61	53	44	40	36	34	36	36	40		
11	44	46	54	59	54	43	39	37	37	36	35	45		
12	42	49	54	59	55	45	40	35	36	34	36	44		
13	41	47	54	59	54	46	42	36	40	37	35	50		
14	42	47	57	58	53	44	40	34	34	36	34	48		
15	42	46	59	63	53	45	41	33	33	35	34	45		
16	43	46	57	63	56	44	41	34	36	34	36	47		
17	42	46	56	62	53	45	40	35	35	34	35	47		
18	43	47	56	59	53	44	38	35	41	35	35	45		
19	48	46	56	59	52	45	38	37	37	38	35	45		
20	50	47	58	59	52	47	38	39	35	37	36	45		
21	49	49	65	61	51	46	38	39	35	38	37	44		
22	46	49	65	62	50	45	39	37	36	36	37	44		
23	47	52	64	59	50	44	44	35	36	36	36	44		
24	61	56	64	61	50	44	41	35	34	36	37	45		
25	57	57	62	57	50	43	39	34	35	37	36	46		
26	50	60	62	59	49	45	38	35	36	36	37	44		
27	52	53	65	58	47	47	38	33	38	37	36	42		
28	50	51	66	56	47	49	36	34	40	37	42	42		
29	48	59	66	55	51	45	36	33	37	35	41	42		
30	48		64	53	47	45	37	32	36	35	39	41		
31	46		62		48		37	33		34		41		

STATION.--01569800 LETORT SPRING RUN NEAR CARLISLE, PA

LOCATION.--Lat 40°14'05", long 77°08'23", Cumberland County, Hydrologic Unit 02050305, on right bank 320 ft downstream from bridge on U.S. Highway 11, 0.2 mi upstream from mouth, 3.1 mi west of New Kingstown, and 3.7 mi east of Carlisle.

DRAINAGE AREA.--21.6 square miles.

PERIOD OF RECORD.--June 1976 to September 2009. (Discontinued)

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 410 ft above sea level, from topographic map.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1936 reached a stage of 8.8 ft, discharge not determined, and flood in June 1972 reached a stage of 8.4 ft, from information by local resident, discharge not determined.

Averages	(from ab	ove chart)
----------	----------	------------

Mean of daily mean values for each d	ay for water year of record in,	ft ³ /s (Calculation Period 1975-10-01->2009-09-30)
--------------------------------------	---------------------------------	--

	January	February	March	April	May	June	July	August	September	October	November	December
Monthly Totals	1423	1414	1808	1803	1609	1364	1253	1097	1062	1106	1082	1340
Monthly Averages	46	49	58	60	52	45	40	35	35	36	36	43
Yearly Average						44.719	922198					

Appendix C Letort Spring Run Habitat Assessment Robert Schott

An assessment of Letort Spring Run habitat was conducted on March 5 and March 9, 2021. The assessment protocol that was followed is utilized by the Pennsylvania Department of Environmental Protection (DEP) (Lookenbill and Shull, 2018) and is a modification of USEPA's Rapid Bioassessment Protocols (Barbour et al. 1999).

DEP utilizes two separate protocols. One is for streams with riffle/run habitat and the other is for low gradient streams with pool/glide habitat. Since the Letort is a low gradient stream the low gradient stream protocol was chosen for this assessment. It involves the assessment and scoring of nine parameters each with a possible score ranging from 1 to 20 with 20 being the best. The highest possible score is 180.

The matrix of parameters that are looked at during the assessment is based on physical characteristics of the stream and the land surrounding the stream. Both instream and surrounding land conditions will have a limiting effect on quality and quantity of habitat available for aquatic biological communities. Even though the quality (chemical composition) of the water flowing through a reach may be good the quality of the habitat (aquatic and terrestrial) may be limiting the full potential of the community.

The resulting scores for the various reaches show how that particular reach compares to optimal stream conditions and indicates where improvements can be made. It also shows how each reach scores relative to other reaches. It is also important to look at each individual parameter to understand how the total score was derived or what parameter(s) are limiting the reach from its full potential.

An explanation of the matrix of parameters used to assess the Letort is listed here:

• Epifaunal Substrate/Available Cover. Evaluates the percent makeup of the substrate (boulders, cobble, other rock material) and submerged objects (logs, undercut banks) that provide refuge for a variety of fish including both large bodied pelagic species as well as smaller benthic specialists.

• **Pool Substrate Characterization.** Evaluates the type and condition of bottom substrates found in pools. Firmer sediment types (e.g., gravel, sand) and rooted aquatic plants support a wider variety of organisms and are scored higher than a pool substrate dominated by mud or bedrock and no plants.

• **Pool Variability.** Evaluates the overall mixture of pool types found in streams, according to size and depth (large-shallow, large-deep, small-shallow, and small-deep.

Note: Since the Letort consists primarily of runs with few pools this parameter would more correctly be considered run variability. The protocol differentiates deep from shallow as greater than 0.5 meter (approximately 20 inches).

• **Sediment Deposition.** Estimates the extent of sediment effects in the formation of islands, point bars, and pool deposition. Deposition is typically evident in areas that are obstructed by natural or man-made debris and areas where the stream flow decreases, such as bends.

• Channel Flow Status. Estimates the areal extent of exposed substrates due to water level or flow conditions. The flow status will change as the channel enlarges (e.g., aggrading stream beds with actively widening channels) or as flow decreases as a result of dams and other obstructions, diversions for irrigation, or drought. In riffle/run prevalent streams, riffles and cobble substrate are exposed; in low gradient streams, the decrease in water level exposes logs and snags, thereby reducing the areas of good habitat.

• **Channel Alteration.** Evaluates the extent of channelization or dredging, but can include any other large-scale changes in the shape of the stream channel that would be detrimental to the habitat. Channel alteration is present when artificial embankments, rip-rap, and other forms of artificial bank stabilization or structures are present; when the stream is very straight for significant distances; when dams and bridges are present; and when other such changes have occurred.

• **Condition of Banks.** Evaluates the extent of bank failure, signs of erosion, or the potential for erosion. The stream bank is defined as the area from the water's surface to the bankfull delineation. Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks, and are therefore considered to be unstable. Signs of erosion include crumbling, unvegetated banks, exposed tree roots, and exposed soil.

• Bank Vegetative Protection. Estimates the extent of stream bank that is covered by plant growth providing stability through well-developed root systems. The stream bank is defined as the area from the water's surface to the bankfull delineation. This parameter supplies information on the ability of the bank to resist erosion as well as some additional information on the uptake of nutrients by the plants, the control of instream scouring, and stream shading. This parameter is made more effective by defining the native vegetation for the region and stream type (i.e., shrubs, trees, etc.). In some regions, the introduction of exotics has virtually replaced all native vegetation. The value of exotic vegetation to the quality of the habitat structure and contribution to the stream ecosystem must be considered in this parameter. In areas of high grazing pressure from livestock or where residential and urban development activities disrupt the riparian zone, the growth of a natural plant community is impeded and can extend to the bank vegetative protection zone.

• **Riparian Vegetative Zone Width.** Estimates the width of natural vegetation from the edge of the stream bank out through the riparian zone. Narrow riparian zones occur when roads, parking lots, fields, lawns, bare soil, rocks, or buildings are near the stream bank. Residential developments, urban centers, golf courses, and range land are the common causes of anthropogenic degradation of the riparian zone. Conversely, the presence of "old field" (i.e., a previously developed field not currently in use), paths, and walkways in an otherwise undisturbed riparian zone may be judged to be inconsequential to altering the riparian zone and may be given relatively high scores.

The habitat assessment was conducted on the upper Letort from Rt. 81 upstream to Rt. 34 and also included the unnamed tributary or East Branch which flows through the property owned by the Central Pennsylvania Conservancy (CPC). Due to differing flow regimes and land use it was initially thought that the assessment should be broken down into 3 reaches: Rt. 81 to upstream to the confluence of the East Branch and Bonny Brook Branch, the East Branch, and the Bonny Brook Branch upstream to Rt. 34. Upon further discussion and conditions in the field the assessment was broken down into a total of 8 reaches (Appendix 1). Habitat scores ranged from a low of 89 for Reach 1 on the Bonny Brook Branch to a high of 144 for Reach 4 on the East Branch (Table 1). Score sheets for the various reaches are included in Appendix 2.

Reach	Habitat Score
Main Letort, Reach 1	141
Main Letort, Reach 2	135
Bonny Brook Branch, Reach 1	89
Bonny Brook Branch, Reach 2	138
East Branch, Reach 1	127
East Branch, Reach 2	100
East Branch, Reach 3	114
East Branch, Reach 4	144

Table 1. Letort Spring Run habitat assessment reaches and habitat scores.

Results

Main Letort, Reach 1, Score 141

This reach starts at the confluence of both branches and continues to the Letort Rail Trail bridge downstream from the Union Quarry property (Figure 1). In spite of the quarry activity and narrowed riparian corridor through the quarry property the upper and lower sections of this reach contain numerous deep channels through the vegetated beds. Bank stability is good even through the quarry stretch where vegetation and tree roots prevent erosion and keep the stream banks in place. Evidence of erosion is minimal and limited to small areas at bridge crossings.

Figure 1. Main Letort Spring Run, Reach 1, looking downstream from the confluence of the East Branch on the right and the Bonny Brook Branch on the left.

Pool or run variability is fairly optimal due to the good mix of deep and shallow areas of various sizes. This diversity in habitat promotes a more diverse, stable aquatic community. Also, the input of a fairly constant flow from numerous springs throughout the Letort watershed results in an optimal channel flow status.

The substrate is a good mix of sediment, vegetated beds, and an extensive stretch of gravel which provides good spawning habitat (Figure 2). Apparently the gravel was dumped in the stream years ago to provide spawning habitat for trout.

Figure 2. Main Letort Spring Run, Reach 1, looking downstream from the most upstream Union Quarries bridge.

Overall, this section contains excellent fish habitat and cover provided by the deep channels that have been cut through the submerged vegetation. The mix of gravel substrate and vegetation also provides optimal substrate for macroinvertebrate colonization.

Main Letort, Reach 2, Score 135

This reach begins at the Letort Rail Trail bridge and continues downstream to the I-81 bridge (Figure 3). It is a meandering stretch of stream with optimal stream-side habitat. For the vast majority of the reach the stream banks are well vegetated and stable. The riparian zone is wide and fairly diverse providing the stream good buffering from overland runoff. Just downstream from the Letort Rail Trail bridge sections of gravel substrate can be seen in deeper runs cut between the vegetation providing deep water and overhead cover for fish. The vegetation and gravel provide good habitat and substrate for insects and crustaceans. Unfortunately, in-stream habitat for fish and macroinvertebrates is sub-optimal for the reach overall due to sediment deposition.

Figure 3. Main Letort Spring Run, Reach 2, looking downstream from the Letort Rail Trail bridge which is located downstream from Union Quarries.

Further downstream a couple hundred meters the stream is virtually devoid of all submerged vegetation (Figure 4). The substrate consists of a thick layer of silt from bank to bank rendering this section mostly uninhabitable for a good fish and macroinvertebrate community. The exact upstream and downstream extent of this non-vegetated reach should be further documented. The cause of the condition is presently unknown.

Figure 4. Main Letort Spring Run, Reach 2, looking downstream. Location is approximately 200 meters downstream from Letort Rail Trail bridge.

Further downstream (Figure 5) where the Letort flows past the Cumberland Valley Chapter of Trout Unlimited's property (Vince's Meadow) pockets of vegetation are present allowing for the formation of deeper, scoured channels between the vegetated areas. The vegetation provides cover for fish and substrate for macroinvertebrate colonization.

As with the condition in Reach 1 upstream, channel flow status was optimal due to a high ground water table and large spring flow.

Figure 5. Main Letort Spring Run, Reach 2, looking upstream at the reach bordering the property owned by the Cumberland Valley Chapter of Trout Unlimited (Vince's Meadow).

Bonny Brook branch, Reach 1, Score 89

The upper limit of this reach starts at the Rt. 34 bridge and ends at the confluence with the large spring-fed flow on the east side of the Capone property. This area was formerly known as the Spott's Dam portion of the B&W Quality Growers watercress farm. Over half of this reach is bordered on both sides by property owned by Hempt Brothers, Inc. which is wooded. The lower portion is bordered on the northwest side by residential land that for the most part is partially wooded along the stream corridor. The southeast side of the lower portion is the former watercress farm property which is wooded along the stream corridor. There were no signs of significant overland sediment input along the entire reach. Nonetheless, the entire streambed is laden with a thick layer of sediment and minimal vegetation (Figure 6).

Figure 6. Bonny Brook Branch of Letort Spring Run, Reach 1, looking upstream. Location is approximately 250 meters downstream from Rt. 34.

The lower portion of this reach receives some spring input from a smaller spring on the Capone property and allows for the establishment of some vegetated areas (Figure 7). Overall though, the entire reach lacks depth, clean substrate, and favorable habitat precluding the establishment of a healthy fish and macroinvertebrate community.

Figure 7. Bonny Brook Branch of Letort Spring Run, Reach 1, looking downstream.

Due to dry weather conditions prior to this survey channel flow status was low since this portion of the Letort lacks input from larger springs. The eroded stream banks indicate that the stream level through this reach is at least a foot higher during major storm events. It appears that the high sediment load is due to erosion from agricultural areas upstream from Rt. 34 and eroding stream banks along this reach.

The sediment inputs from the agricultural areas upstream from Rt. 34 need to be investigated with subsequent reduction or elimination. This additional sediment loading along with the existing instream load and eroding stream banks will continue to be flushed downstream into the lower Letort exacerbating problems in an already sediment-laden stream.

Bonny Brook branch, Reach 2, Score 138

This reach begins with two large spring outflows (Figure 8) along the east border of the Capone property (former B&W Quality Growers watercress farm) and ends downstream from Bonnybrook Road at the confluence with the unnamed tributary (East Branch). Most notable about the stretch of stream immediately below the springs is the clean gravel substrate. This is most likely what most of the Letort looked like prior to development and farming in the watershed.

Figure 8. Bonny Brook Branch, Letort Spring Run, Reach 2, showing one of the two major spring outflows located on the eastern border of the Capone property. Note the clean gravel substrate.

The large volume of flow from those springs provides this section of the Letort with optimal channel flow although at least half of the reach is shallow due to the width of the stream (Figure 9).

Figure 9. Bonny Brook Branch, Letort Spring Run, Reach 2, looking upstream. Location is immediately below the confluence of Reach 1 and major spring outflows located on the Capone property.

Habitat and depth improve in those areas where the stream is narrower. Such is the case along the Luciano property (Figure 10) where the narrowing of the channel has led to increased water velocity which in turn allows for the flushing of sediment and reduced plant growth. Clean gravel areas are also prevalent which provides excellent habitat for fish spawning and macroinvertebrate colonization.

Figure 10. Bonny Brook Branch, Letort Spring Run, Reach 2, looking downstream towards Luciano property.

Further downstream the stream widens (Figure 11). This is especially significant along the stretch owned by the Cumberland Valley Chapter of Trout Unlimited. This area is known as Trego's Meadow.

Figure 11. Bonny Brook Branch, Letort Spring Run, Reach 2, looking downstream. The left side of the frame is the property owned by the Cumberland Valley Chapter of Trout Unlimited.

The wider channel and slower water velocity promotes sediment deposition along with increased plant growth which in turn tends to widen the channel. A narrowing of the channel or addition of structure to move the flow to the center of the stream would allow for deeper habitat and a flush of accumulated sediment and excessive plant growth. Exposed gravel would allow for additional spawning habitat and clean substrate for macroinvertebrate colonization.

The lower end of Reach 2 between Bonnybrook Road and the confluence with the East Branch is narrower (Figure 12). Deeper channels are prevalent between the vegetated beds providing excellent fish habitat.

Figure 12. Bonny Brook Branch, Letort Spring Run, Reach 2, looking upstream towards Bonnybrook Road.

In summation, Reach 2 of the Bonny Book branch has fairly good fish habitat overall except for wider stretches of the stream. Sediment deposition tends to be more prevalent in those areas which promotes plant growth and further widening of the channel. Overall though, sediment deposition is not nearly as severe as upstream in Reach 1. Substantial areas of exposed gravel allow for fish spawning and macroinvertebrate colonization.

Out-of-stream habitat is optimal to sub-optimal. Most of the stream banks are moderately stable with well established vegetative protection. Except for a small section of residential land-use the majority of the reach has a wide, protective riparian zone preventing the introduction of additional sediment.

East Branch, Reach 1, Score 127

This reach starts on the southeast side of Spring Garden Street where the stream emerges from two large spring areas (Figure 13). From there it flows under Spring Garden Street and on to the property

Figure 13. East Branch, Letort Spring Run, Reach, looking upstream from Spring Garden Street.

owned by the Central Pennsylvania Conservancy (CPC) which was the former B&W Quality Growers watercress farm. This reach ends at the road culvert at the upstream border of the former watercress farm (Figure 14). Major stream channel modifications and land use changes have occurred below that location due to activities at the former watercress growing facility.

Channel flow status for the reach was optimal due to the spring flow which is fairly consistent. Throughout the reach the substrate is mostly gravel with interspersed areas of sedimentation. Watercress beds are found over a major portion of the stream channel. The majority of the reach is shallow and appears to be good spawning habitat and refuge for juvenile trout and small fish. The areas of clean gravel substrate also promote colonization by aquatic macroinvertebrates. The lower end of this reach formerly served as an upstream macroinvertebrate sampling location for studies performed by DEP to determine the effects of the watercress farm operations on the stream.

The habitat along this reach is fairly stable. The stream borders the Letort Rail Trail which is evidence of past channelization which narrows the riparian vegetative zone. The stream banks are mostly stable with only small acres of exposed soil. Potential for erosion and sediment-laden runoff is minimal.

Figure 14. East Branch, Letort Spring Run, Reach 1, looking upstream from the upper end of former watercress beds on property owned by Central Pennsylvania Conservancy.

East Branch, Reach 2, Score 100

The reach begins at the road culvert at the upstream end of the former watercress farm and continues downstream to the next road culvert separating the upper and lower sections of the former farm. B&W Quality Growers named the upper section of the farm as the Meadows beds. The lower section was known as the Bonny Brook beds.

Evidently the original stream channel ran through the present location of the Meadows beds but was diverted east and then along Spring Garden Street (Figure 15) where it flows north-northwest as a channelized stretch between Spring Garden Street and a shale-filled road between the stream and the cress beds. It flows along Spring Garden Street for approximately 350 meters (1148 feet) and then makes an unnatural 90-degree turn to the southwest and flows under the next road culvert separating the upper and lower farm areas which is the lower border of Reach 2.

Figure 15. East Branch, Letort Spring Run, Reach 2, looking downstream from road culvert at upper end of former watercress beds. Spring Garden Street is in the background.

As the stream flows along Spring Garden Street (Figure 16) it picks up additional flow from two springs. Channel flow status along this reach is optimal and the majority of the reach is deep. The deeper water, vegetation, and occasional large woody debris all combine to create good fish habitat. Substrate composition is fairly good with numerous areas of clean gravel for macroinvertebrate colonization but sediment deposition is present over 50% of the reach. It appears that the major source of sediment along this reach is coming from erosion off the steep stream bank bordering Spring Garden Street. Overall, the condition of the stream banks is marginal along both sides of the stream. The riparian vegetative zone rated poorly due to the short distance between the stream and Spring Garden Street on one side and the shale-fill road and cress beds on the opposite side.

Figure 16. East Branch, Letort Spring Run, Reach 2, looking upstream from property owned by Central Pennsylvania Conservancy. Spring Garden Street is above the steep bank on the left.

After the stream makes the 90-degree turn it flows along the lower end of the Meadows cressbeds where the former discharges from the cressbeds are located (Figure 17). These discharge pipes were a source of sediment when the cress farm was in operation. When the farm was active the workers would walk through the beds stirring up sediment while harvesting the watercress by cutting the tops off the plants. This would typically occur 4 to 5 times a growing season. The Pennsylvania Department of Environmental Resources (now DEP) began regulating the farm after the May, 1981 fish kill due to their extensive use of pesticides. B&W Quality Growers was further instructed to install filter fabric above the discharge pipes at the lower end of the beds. This resulted in a reduction in sediment leaving the beds but did not eliminate it. The water that was discharged from the beds were also a source of nutrient and pesticide contamination.

Figure 17. East Branch, Letort Spring Run, Reach 2, looking upstream from road culvert separating the former upper (Meadows) and lower (Bonny Brook) cressbeds.

Overall, fish and macroinvertebrate habitat in Reach 2 would be characterized as fairly good mostly due to a deep narrow channel through the lower half, presence of vegetation and large woody-debris, and areas of gravel substrate. The reach received its lower score due to the fact that it is channelized and has poor stream-side habitat.

East Branch, Reach 3, Score 114

This reach begins at the road culvert separating the upper and lower sections of the former watercress farm and ends at Letort Rail Trail bridge. Most of the reach flows between the Letort Rail trail and a earthen roadbed separating it from the former Bonny Brook section of the old cress farm (Figure 18).

Figure 18. East Branch, Letort Spring Run, Reach 3, looking downstream from road culvert separating the former upper (Meadows) and lower (Bonny Brook) cressbeds. PVC pipe was formerly used to divert water from cressbed to a block trout holding area in order to observe the potential effects of the discharge on the fish.

The reach tends to be shallower overall compared to Reach 2. This is mostly due to increased sedimentation that has occurred over the years from the discharge exiting the cressbeds. The retention of sediment in this reach was further exacerbated by the presence of two small dams that were installed to raise the water level for diversion into the Bonny Brook cressbeds. This has led to the widening and filling in of a large section of this reach (Figure 19). Overall, sediment deposition affects upwards to 80 percent of this section. Thick beds of vegetation are also present. During the summer thick growths of filamentous algae also plague this section of the stream. While in operation the farm would drip-feed fertilizer into the cressbeds possibly leaving a high nutrient residual in the accumulated sediment.

Figure 19. East Branch, Letort Spring Run, Reach 3, looking upstream from former dam structure utilized to raise water level and divert flow into former cressbeds.

Downstream from the lower impounded stretch the stream narrows and the flow velocity increases which has led to the flushing of some of the sediment and exposing of some areas of gravel. This section is mostly shallow with good habitat for smaller fish and macroinvertebrates (Figure 20).

Figure 20. East Branch, Letort Spring Run, Reach 3, looking downstream. Letort Rail Trail is on the left side of the stream.

On the date of this investigation the lower section of Reach 3 was flowing over its banks into a wetland area below the former watercress beds (Figure 21). Bare stream banks and numerous downed trees give the stretch a poor appearance although the large woody-debris in the stream and deep channel provides excellent cover for fish.

Figure 21. East Branch, Letort Spring Run, Reach 3, looking upstream from Letort Rail Trail bridge towards former watercress farm.

Overall, this reach of the East Branch has a diversity of issues and habitat types which makes for a difficult overall evaluation. Fish cover is slightly suboptimal for the reach. Numerous shallow areas are available for small fish and scattered reaches with gravel offer spawning habitat. The deeper areas with overhead cover in the lower section provide cover for larger fish. Macroinvertebrate colonization is favorable in those areas where increased velocity has exposed gravel substrate. Sediment deposition is a problem in the upper section of the reach due to the presence of small diversion dams.

Stream-side habitat is marginal to suboptimal. For the most part the stream is channelized with the rail trail on one side and the former cress farm road on the other. At least 25% of the reach had exposed stream banks which are susceptible to erosion. The riparian zone was narrow along the trail side of the stream and basically non-existent on the former cress farm side.

East Branch, Reach 4, Score 144

This reach begins at the Letort Rail Trail bridge and ends at the confluence with the main Letort or the Bonny Brook branch. The reach was not included as part of Reach 3 because of the major differences that exist upstream and downstream from the bridge. Below the bridge the stream meanders through a marsh/meadow type of habitat at least to the next downstream bridge (Figure 22). The channel is narrow and deep with areas of exposed gravel. The deep water and beds of vegetation provide excellent habitat for fish. The presence of exposed gravel and rocks provides better habitat for macroinvertebrates. The condition of the banks and bank vegetative protection is optimal with no signs of erosion. The only channel alteration is at the location of the two bridge crossings. The two parameters that lowered the score for this reach were sediment deposition and riparian zone width caused by the thick beds of watercress that trap sediment and the presence of a gravel roadway that infringes on the riparian zone.

Figure 22. East Branch, Letort Spring Run, Reach 4, looking downstream from Letort Rail Trail bridge.

As a side note, a sampling of macroinvertebrates was conducted on the date of this habitat study. The sampling revealed numerous mayfly nymphs of the genus *Ephemerella*. This was notable due to the fact that back when the watercress farm was in operation there were virtually no mayflies to be found in the stretch downstream from the cress bed discharges.

Literature cited

Shull, D. R., and J. Lookenbill (editors). 2018. Water Quality Monitoring Protocols for Streams and Rivers. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, second edition. EPA 841-B-99-002. United States Environmental Protection Agency; Office of Water. Washington, D.C.

Letort Spring Run Habitat Study

Physic	al Habitat Evalua	ation	n Forr	n for	Low	Gra	adie	nt (F	Pool	/Glid	le)	Strea	ams			
Waterbody Name: LE	TORT SPRING RUN	GIS	S Key (YYYYM	MDD-h	hmm-	User):	3	- 5-2	2021						
Location: MAIN LET	ORT , TRAIL BRID	GE	UPST	REAM	TO	CON	SFLUF	NCE	EWI	EAST	B	EANC	H			
REACH	Ĩ.	_														
Investigators: Scito	MT. NAGUSKI, GL	ACE			Comp	letec	d By: ⁻	R .!	SCH	OTT	40%					
Parameter	Optimal		S	ubopt	imal			M	argin	al			1	Poor		
1. Epifaunal Substrate/Available Cover	Greater than 50% o substrate favorable epifaunal colonizatio and fish cover; mix o snags, submerged logs, undercut bank cobble or other stab habitat at stage to allow full colonizatio potential (i.e., logs/snags that are new fall and not transient).	f for for for for for for for for for fo	30-50% habitat; full colo potentia habitat of popu present substra new fal prepare coloniz at high	mix c well-s onizatio al; ade for ma lations ce of a te in th l, but r ed for ation (f end of	of stab suited on quate intena s; ddition ne forr not yet may ra	le for ance nal m of t ate	10-3 habit avail desir frequ remo	0% n tat; h abilit able uently oved.	nix of abitat y less ; subs / distu	stabl than strate urbed	or	Less habit is ob unsta	than at; la vious able c	10% ck of ; sub or lac	stal hab stra king	ole itat te
	20 (19) 18 17	16	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1
Characterization	materials, with grave and firm sand prevalent; root mats and submerged vegetation common	el I	mud or be dom mats ai vegetat	of sof clay; r inant; nd sub ion pre	t sanc nud m some merge esent.	a, nay root ed	All m botto mat; vege	iud o om; lif no s tatio	r clay ttle or ubme n.	or sa no ro rged	oot	bedro veget	-pan ock; r tatior	ciay no roo n.	or ot m	at or
	20 19 18 17	(16)	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1
3. Pool Variability	Even mix of large- shallow, large-deep small-shallow, small deep pools present.	, (Majorit <u>y</u> deep; v	/ of po ery fev	ols lar w shal	rge- llow.	Shall more deep	low p prev poo	ools valent Is.	much t than		Majoi shallo absei	rity o ow or nt.	r poo pool	ls sr s	nall-
· -	20 19 18 17	16	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1
4. Sediment Deposition	Little or no enlargement of islar or point bars and les than 20% of the bott affected by sedimen deposition	nds I ss 1 tom 1 nt 9	Some r bar forr from gr fine sec of the b slight d pools.	new ind nation avel, s liment ottom epositi	crease , most and o ; 20-5 affect on in	e in Ily r 0% æd;	Mode new fine s and r of the sedir obstr cons bend depo preva	erate grave sedin new l e bot nent ructio trictio ls; me sition alent	depo el, sa hent c bars; tom a depo ons, ons, a odera n of p	osition nd or on old 50-80 iffecte sits a sits a ind ite ools	n of)% ed; t	Heav mate devel than chang pools due t sedin	ry dep rial, i lopm 80% ging alm o suk nent	posits ncrea ent; r of the frequ ost al ostan depo	s of f ased nore e bo ently oser tial sitio	ine bar ttom /; it n.
	20 19 18 17	16	15 1	4 (13) 12	11	10	9	8	7	6	5	4	3	2	1
5. Channel Flow Status 20	Water reaches base both lower banks an minimal amount of channel substrate is exposed.	e of h nd a	Water f availab <25% c substra	ills >7: le char of chan te is e	5% of nnel; c nel xpose	the or d.	Wate the a and/o are n	er fills vaila or riff nostly	s 25-7 ble cl le sub y exp	75% o nanne ostrat osed.	of el es	Very chani prese pools	little nel a ent as	wate nd m s star	r in ostly nding	/]
	(20) 19 18 17	16	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1

	MAIN LETORT	. REACH I		Appendix C							
Parameter	Optimal	Suboptimal	Marginal	Poor							
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	 Banks shored with gabion or cement; ove 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely 							
	20 19 18 17 16	15 14 13 (12) 11	10 9 8 7 6	5 4 3 2 1							
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.							
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1							
8. Bank Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.							
	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1							
9. Riparian Vegetative Zone	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.							

TOTAL 141

Physic	al Habitat Evaluatio	on Form for Low Gr	adient (Pool/Glide)	Streams		
Waterbody Name: LET	TORT SPRING RUN G	SIS Key (YYYYMMDD-hhmm-	User): 3-5-2021			
Location: MAIN L	ETORT, RT. 81	PSTREAM TO TRAIL	BRIDGE .	κ		
REACH 2						
Investigators: SCHOTT	NAGUSKI, GLACE	Completed	By: R. SCHOTT			
Parameter	Optimal	Suboptimal	Marginal	Poor		
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale)	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1		
Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	 Hard-pan clay or bedrock; no root mat or vegetation. 		
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.		
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 20% of the bottom affected by sediment deposition	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	20 19 18 17 16	15 14 13 12 11	10 9 8 (7) 6	5 4 3 2 1		
5. Channel Flow Status 2.0	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		

Parameter	Optimal					Su	bopti	imal			M	argin	al		Poor					
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.					Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.				Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.					Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely					
	20 19	18	17	16	(15)	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
7. Condition of Banks	Banks sta of erosion failure ab minimal; for future <5% of b	able; n or osent little prol ank	; evid bank t or poter blems affect	ence ntial s. æd.	Mode infree of er seale bank area	erate quen osion ed ov t in re s of o	ely sta it, sm n mos ver. 5 each erosi	able; all an stly -30% has on.	reas	Mod 30-6 reac eros pote	erate 0% c h has ion; ł ntial	ly un of ban s area nigh e during	stabl ik in as of erosic g floc	e; on ods.	Unst area frequ secti obvio sloug bank scars	able; s; "ra ient a ons a ous b ghing has s.	many along and be and be ank ; 60-1 erosid	y ero eas stra ends 00% onal	ight s; of	
	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
8. Bank Vegetative Protection	More tha streamba and imme zone cov vegetatio trees, un shrubs, o macrophy vegetativ through g mowing r evident; a plants all naturally.	n 90 ank s ediat ered on, in ders or no ytes; re dis grazi minin almo oweo	% of surfac- te ripa l by n cludir tory nwoo sruption ng or nal or st all d to g	the es arian ative ng dy on on not row	70-9 strea cove vege class well- disru not a grow great one- plant rema	0% c imba red l itatio of p repre- ptior iffect t exte half c stub	of the ink si oy na n, bu blants esent n evic ing fu otenti ent; n of the oble h g.	urfact tive t one is no ed; lent t all pla al to nore pote neigh	es ot out ant any than ential t	50-7 strea cove disru patcl close vege less the p stubl rema	0% c amba red k ption nes c ely cr etatio than oten ole h aining	of the nk su by veg n obvi of bar oppe n con one-l tial pl eight g.	urface getat ous; e soi d nmor half c ant	es ion; l or n; of	Less strea cove disru strea is ve has I centi stubl	thar mba red k ptior mba ry hig been mete ble h	n 50% nk sur oy veg nk veg nk veg gh; ve remo ers or eight.	of t face etat geta geta ved less	he es tion; ition ation to 5 in	
	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
9. Riparian Vegetative Zone	Width or >18 mete activities lots, road cuts, lawn have not zone.	ripar ers; h (i.e. Ibeds ns or impa	rian zo numai parki s, clea r crop acted	one n ng ar- s)	Widtl 12-18 activi impa minir	h of 1 8 me ities cted nally	ripari eters; have zone	an zo hum e only	one an ⁄	Widt 6-12 activ impa deal.	h of i mete ities cted	riparia ers; h have zone	an zo uma a gr	n n eat	Widt <6 m ripari to hu	h of r leters an v man	iparia s; little egetat activi	n zo or i tion ties.	one no due	

MAIN LETART REACH 2

Annendix C

135 TOTAL

Physic	al Habitat Evaluatio	on Form for Low Gra	adient (Pool/Glide)	Streams					
Waterbody Name:) er	FOR SPAN PILL	IS Key (YYYYMMDD-hhmm-	User): 2-9-2021						
Location: Ramon Be	MY (LIEST) AD ANCH	Para CONIELLIENCE LUT	HAAM SPOINT FLOW	ON CAPONE					
DRORERI	IN UPSTREAM TO P	T 34 REACH		2 1 a and 14 - 1 - In-					
Investigators: Source	T CORONE	Completed	By: R SCHOTT						
Parameter	Optimal	Suboptimal	Marginal	Poor					
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale)	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.					
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	(5) 4 3 2 1					
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.					
	20 19 18 17 16	15 14 13 12 (11)	10 9 8 7 6	5 4 3 2 1					
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.					
Ŭ	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1					
4. Sediment Deposition 5	Little or no enlargement of islands or point bars and less than 20% of the bottom affected by sediment deposition	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1					
5. Channel Flow Status 8	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1					

	BONNY 1	BROOK BRANCH	REACH 1	Appendix C			
Parameter	Optimal	Suboptimal	Marginal	Poor			
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely			
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
8. Bank Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.			
	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
9. Riparian Vegetative Zone 5	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.			
	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1			

TOTAL 89

Physic	al Habitat	Evalu	atic	on Fo	orm	for	Low	Gra	adieı	nt (F	Pool	/Glic	le)	Strea	ams	5		
Waterbody Name: LE	TORT SPR	ING RU	N G	IS Ke	y (YY	YYM	MDD-hl	hmm-	User):	1	3-5-	- 20	21					
Location: BONNY BRO	DOK (WEST)	BRANC	HU	IPSTR	EAN	1 TO	SPA	RING	F ON	EAS	ST SI	DEO	FC	CAPON	EP	ROP	ERT	Y.
REACH	2						and the											
Investigators: Scito	TT, NAGL	ISKI,	GU	ICE		0	Comp	letec	d By:	R	- Sc	HOT	T					
Parameter	Opt	imal			Suk	oopti	mal			M	argin	al				Poo	r	
1. Epifaunal Substrate/Available Cover	Greater tha substrate fa epifaunal co and fish cov snags, subi logs, under cobble or o habitat at st allow full co potential (i.o logs/snags new fall and	n 50% c avorable blonizati ver; mix merged cut bank ther stak cage to lonizatio e., that are hot	of for on of cs, ole on not	30-50 habit full co poter habit of po prese subsi new f prepa color at hig	0% n at; w oloni ntial; at fo pula ence trate fall, t ared nizati gh er	nix of vell-si zatio zatio r mai tions of ac in th out no for on (n nd of	f stab uited n quate intena ; ddition e forr ot yet nay ra scale	le for ance nal n of ate	10-30 habit availa desir frequ remo	0% n at; h abilit able iently oved.	nix of abitat y less ; subs / distu	stabl than strate urbed	or	Less habit is ob unsta	thar at; la vious able	10% ack o s; su or la	% sta f hat bstra cking	ble vitat te I.
	transient). 20 19 1	8 17	16	(15)	14	13	12	11	10	9	8	7	6	5	4	3	2	1
2. Pool Substrate Characterization	Mixture of s materials, w and firm sal prevalent; m and submen vegetation of	ubstrate vith grav nd oot mats rged commor	e vel s	Mixtu mud be do mats vege	or cla or cla omina and tation	f soft ay; m ant; s subr n pre	sand nud m some nerge sent.	l, iay root ed	All m botto mat; vege	ud o m; lit no s tatio	r clay ttle or ubme n.	or sa no ro rged	and oot	Hard- bedro veget	-pan ock; tatio	clay no ro n.	or oot m	at or
	20 19 1	8 17	(16)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
3. Pool Variability	Even mix of shallow, lan small-shallo deep pools	f large- ge-deep w, smal present), -	Majo deep	rity o ; ver	of poo y few	ols lar / shal	ge- low.	e- Shallow pools much M w. more prevalent than sh deep pools. at			Majority of pools small- shallow or pools absent.						
	20 19 1	8 17	16	15	14	13	12	11	(10)	9	8	7	6	5	4	3	2	1
4. Sediment Deposition	Little or no enlargemen or point ban than 20% o affected by deposition	it of islai s and le f the bot sedimer	nds ss ttom nt	Some bar fo from fine s of the slight pools	e nev orma grav sedin e boti dep	w inc ition, el, sa nent; tom a ositic	rease most and or 20-50 affect on in	e in ly r 0% ed;	Mode new g fine s and r of the sedin obstr const bend depo preve	erate grave sedim new l bot nent uctio trictic s; mo sitior alent.	depo el, san hent c bars; tom a depo ons, ons, a odera h of p	osition nd or on old 50-80 ffecte sits a sits a nd te ools)% ed; t	Heav mate devel than chang pools due to sedim	y de rial, i 80% ging alm o sul nent	posit ncre of th frequ ost a ostar depo	ts of more ne bo uentl abser ntial ositio	fine I bar ittom y; nt n.
	20 19 1	8 17	16	(15)	14	13	12	11	10	9	8	7	6	5	4	3	2	1
5. Channel Flow Status 20	Water reach both lower to minimal am channel sub exposed.	nes base banks ar ount of ostrate is	e of nd	Wate availa <25% subst	r fills able of of c trate	s >75 chan chanr is ex	% of nel; o nel pose	the or d.	Wate the a and/c are m	r fills vaila or riff nostly	s 25-7 ble cł le suk y exp	5% o nanne ostrate osed.	f el es	Very chanr prese pools	little nel a ent a:	wate nd n s sta	er in nostly nding	9
1	(20) 19 1	8 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Letort Cold Water Conservation Plan

	0
•	- U

C)-	3	1

TOTAL 138

Parameter 6. Channel Alteration Ch dri mi no	Optimal hannelization or redging absent or inimal; stream with ormal pattern.	Suboptimal Some channelization present, usually in areas of bridge abutments; evidence of	Marginal Channelization may be extensive; embankments or	Poor Banks shored with gabion or cement; over			
6. Channel Alteration Cł dr mi no	hannelization or redging absent or iinimal; stream with ormal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of	Channelization may be extensive; embankments or	Banks shored with gabion or cement; over			
15		past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; ove 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely			
2	0 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
7. Condition of Ba Banks of fai mi for <5	anks stable; evidence erosion or bank ilure absent or inimal; little potential r future problems. 5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
20	0 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
8. Bank Vegetative Model Protection str zoi vegetative tre shi max vegetative Vegetative shi max shi shi s	ore than 90% of the reambank surfaces ad immediate riparian one covered by native getation, including ees, understory arubs, or nonwoody acrophytes; getative disruption rough grazing or owing minimal or not vident; almost all ants allowed to grow aturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.			
20	0 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1			
9. Riparian Wi Vegetative Zone >12 act lots cut hav zon	idth or riparian zone 8 meters; human stivities (i.e. parking ts, roadbeds, clear- its, lawns or crops) ave not impacted one.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.			

Physic	cal Habitat Evaluati	on Form fo	r Low Gr	adient	(Pool/	Glide)	Strear	ns			
Waterbody Name:	- LETORT SORNA PAN	GIS Key (YYYY	MMDD-hhmm-	-User):	2-5-	2021					
Location: EAST BRAN	CH FROM CULVE	ET ON UDSTR	EAM FOR A	F FORm	CD (05	:55 FA	PM II	04100	: A AA		
TO M	TAIN SPRING Source	F RE	ACH 1			880					
Investigators: Schart	CARSEN NUMMERT	HARTLEY	Completed	d By: R	Sct	TOTT					
Parameter	Optimal	Subor	otimal		Margina	al		Poc	or		
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to	30-50% mix habitat; well- full colonizat potential; ad habitat for m of population presence of substrate in	of stable -suited for ion equate aintenance as; additional the form of	Imaginal ole 10-30% mix of stable I for habitat; habitat availability less than is active desirable; substrate u iance frequently disturbed or removed. removed.				Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
13	allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	new fall, but prepared for colonization at high end o	not yet (may rate of scale)	et rate le)							
2 De al Cubatanta	20 19 18 17 16	15 14 (13	3) 12 11	10 9	8	7 6	5 4	 3	2	1	
Characterization	materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	mud or clay; be dominant mats and su vegetation p	mud may mud may ; some root bmerged resent.	bottom; mat; no vegetat	or clay little or submer ion.	or sand no root rged	Hard-pa bedrock vegetat	an clay k; no r tion.	y or oot m	at or	
	20 19 (18) 17 16	15 14 13	3 12 11	10 9	8	7 6	5 4	4 3	2	1	
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of p deep; very fe	ools large- w shallow.	arge- Shallow pools shallow. more prevale deep pools.			Majority of pools small- shallow or pools absent.			nall-	
10	20 19 18 17 16	15 14 13	3 12 11	10 9	8	7 6	5 4	1 3	2	1	
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 20% of the bottom affected by sediment deposition	Some new ir bar formatior from gravel, i fine sedimen of the bottom slight deposi pools.	ncrease in n, mostly sand or t; 20-50% n affected; tion in	Modera new gra fine sed and new of the be sedimen obstruct constric bends; i depositi prevalen	te depos avel, san liment o v bars; 5 ottom af nt depos tions, ar moderat ion of po nt.	sition of nd or n old 50-80% ffected; sits at nd ce pols	Heavy of materia develop than 80 changir pools a due to s sedime	deposi il, incre oment; 1% of ti ng freq Imost substa ent dep	its of t eased more he bo juently abser intial positio	fine bar ttom y; nt	
	20 19 18 17 16) 15 14 13	12 11	10 9	8	7 6	5 4	- 3	2	1	
5. Channel Flow Status 2 ()	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >7 available cha <25% of cha substrate is e	75% of the annel; or nnel exposed.	Water fi the avai and/or r are mos	lls 25-75 ilable ch iffle sub stly expo	5% of annel strates osed.	Very litt channe present pools.	le wat l and r as sta	er in nostly anding	/ J	
\sim	20 19 18 17 16	15 14 13	12 11	10 9	8	7 6	5 4	3	2	1	

	EA	ST BRANCH, REI	ACH	Appendix C				
Parameter	Optimal	Suboptimal	Marginal	Poor				
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	 Banks shored with gabion or cement; ove 80% of the stream reach channelized and ; disrupted. Instream habitat greatly altered or removed entirely 				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
	20 19 18 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
8. Bank Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.				
	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1				
9. Riparian Vegetative Zone 8	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				

TOTAL 127

C-9
Physic	al Habitat Evaluati	on Form fo	or Low Gr	adient	(Pool	/Glide)) Stre	ams)	
Waterbody Name:	F LETAPT Spould Pull	SIS Key (YYYY	MMDD-hhmm	-User):	2.5-	2021	-			
Location: EAST BRA	NGH ROAD CULIFET	SEPAPATIN	GIMMER	AND UP	2058 (-0655	BEDS	126	STRE	Δm
TO RO	AD CULVERT ON U	PSTREAM EN	D OF FOR	mer (DE55	Farm.	Ri	ACI	# 2	4-11-7
Investigators: Schore	TOKORN, NUMMERT IL	DTIEN	Complete	d By: 📿	S	HOTT		and other	1	
Parameter	Optimal	Subo	ptimal		Margin	nal			Poor	
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix habitat; well full coloniza potential; ac habitat for n of populatio presence of substrate in new fall, but prepared fo colonization at high end	of stable l-suited for tion dequate naintenance ns; additional the form of t not yet r (may rate of scale)	10-30% habitat; availabi desirabl frequen remove	mix of habita lity less le; subs tly distr d.	f stable t s than strate urbed or	Less habi is ob unst	than tat; la vious able c	10% s ck of ha ; subst or lackir	table abitat rate ng.
	20 19 18 17 16	(15) 14 1	3 12 11	10 9	8	76	5	4	3 2	2 1
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of s mud or clay be dominan mats and su vegetation p	oft sand, ; mud may t; some root ibmerged present.	All mud bottom; mat; no vegetati	or clay little or subme on.	/ or sanc r no root erged	d Haro bedr vege	l-pan ock; r ⊧tatior	clay or าo root า.	mat or
	20 19 18 17 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	2 1
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of p deep; very f	ools large- ew shallow.	Shallow more pr deep po	pools evalen ools.	much t than	Majo shall abse	ority of ow or ent.	f pools [.] pools	small-
	20 19 18 17 16	15 14 (1	3 12 11	10 9	8	76	5	4	3 2	2 1
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 20% of the bottom affected by sediment deposition	Some new i bar formatio from gravel, fine sedimen of the bottor slight depos pools.	ncrease in n, mostly sand or nt; 20-50% n affected; ition in	Moderat new gra fine sed and new of the bo sedimer obstruct constric bends; r depositi prevaler	te depo vel, sa iment o v bars; ottom a nt depo ions, tions, a modera on of p nt.	osition of nd or on old 50-80% affected; osits at and ate ools	f Heav mate deve than chan pools due sedir	/y dep rial, ii lopmo 80% ging f s almo to sub ment o	oosits o ncrease ent; mo of the k frequen ost abs ostantia deposit	of fine ed bar ore pottom htly; ent ion.
	20 19 18 17 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	: 1
5. Channel Flow Status 2.0	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills > available ch <25% of cha substrate is	75% of the annel; or annel exposed.	Water fi the avai and/or ri are mos	lls 25-7 lable cl iffle sul itly exp	75% of hannel bstrates osed.	Very chan prese pools	little v nel ar ent as s.	water ir nd mos s standi	n tly ng
	20 19 18 17 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	1

٢

Letort Cold Water Conservation Plan

Parameter

6. Channel Alteration Channelization or

10		40	40	4	10	be p char pres	neliz ent.	nt, bu ation	it rec i is n	ent ot	t channelized and disrupted.								-		
7. Condition of Banks	20 Bank of en failur minir for fu <5%	19 cs sta osior e ab nal; l iture of ba	18 able; o or b sent little prob ank a	evide oank or poter lems	16 ence ntial ed.	15 Mod infre of er seal bank area	14 erate quen osior ed ov c in re s of e	13 aly sta at, sm n mos ver. 5 each erosid	12 able; all an stly -30% has on.	11 reas	1 10 9 8 7 6 Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods				6 e; on ods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars. 5 4 3 2 1					
	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
8. Bank Vegetative Protection	More strea and i zone vege trees shrul macr vege throu mow evide plant natur	e than mba mme cove tation , unc os, of rophy tative ing n ent; a s allo rally.	n 90% nk su ediate ered n, inc derste r non /tes; e disu razin ninim ilmos owed	% of t urface e ripa by na cludin ory nwood ruptic nal or st all t o gr	the es urian ative ng dy on not row	70-9 strea cove class well- disru not a grow grea one- plant rema	0% c amba ered k etatio s of p repre- uption affect t th po t exte half c t stub	of the ink su by na n, bu lants esent n evid ing fu btenti ent; n of the oble h	urface tive t one is no ed; lent t all pla al to nore pote neigh	es ot out ant any than ential t	50-7(strea cover disru patch close vege less t the p stubb rema	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.				streambank surfaces n; covered by vegetation disruption of streambank vegetation is very high; vegetation has been removed to centimeters or less in stubble height.				ne es ion; tion tion to 5 in	
9 Pinarian	_ ZU	19 h or :	18 inori	1/	16		14	13	12	11		9	8 inoria	7	6	5	4	3	2	1	
Vegetative Zone	>18 r activi lots,	nete ities (road	ipari rs; hi (i.e. p beds	an 20 umar barkir , clea	ne n ng ar-	12-1 activ	n of 1 8 me ities icted	ters; have zone	an zo hum e only	an an	6-12 activi	n of r mete ties l cted	iparia ers; hi have zone	umar a gre	ne n eat	<pre>vvidti <6 m ripari to hu</pre>	n of r leters an vo man	iparia s; little egeta activ	an zo e or r ition ities.	ne 10 due	

BRANCH REACH 2 EAST **Suboptimal**

Some channelization

abutments; evidence of

past channelization,

i.e., dredging, (greater

than past 20 yr.) may

present, usually in

areas of bridge

Optimal

dredging absent or

normal pattern.

minimal; stream with

cuts, lawns or crops)

18

17

16

have not impacted

19

zone. 20

Appendix C Poor

gabion or cement; over

reach channelized and

habitat greatly altered

1

2

80% of the stream

disrupted. Instream

or removed entirely

1

Channelization may be Banks shored with

Marginal

present on both banks;

extensive;

embankments or

shoring structures

and 40 to 80% of

stream reach

TOTAL 100

(5)

4

3

7

6

minimally.

14

13

12

15

deal.

10

9

8

11

Physic	al Habita	t Eval	uatio	on Fo	orm	for	Low	Gra	adie	nt (F	Pool	/Glic	le)	Strea	ms			
Waterbody Name:	lemon Se	owe 1	G	IS Ke		YYMN	/IDD-hl	hmm-	User):	3.	. th	202	1					
Location: EAST BR	ANCH	TRAIL	BRIDA	ΞE U	PSTR	2EAM	72	ROA	PCI	ULVE	RT	SER	1RA	TING	6	VER	AN	D
UPPER (CRESS BE	DS.	R	each	13	-	e ji											
Investigators: Schort	GKORN, A	Numm	ERT,	HAR	TLEY	, 0	Comp	letec	By:	<u>R.</u>	Sa	HOT	T	1				
Parameter	Ор	otimal			Sub	oopti	mal			Ma	argir	nal			F	Poor		
1. Epifaunal Substrate/Available Cover	Greater tha substrate f epifaunal c and fish co snags, sub logs, unde cobble or c habitat at s allow full c potential (i logs/snags new fall an transient).	an 50% Favorab coloniza over; m omerge rcut ba other st stage to oloniza .e., s that a nd not	o of le for ation ix of d nks, able o ntion re not	30-5 habit full c pote habit of pc pres subs new prep color at his	0% n tat; w coloni ntial; tat fo opula ence strate fall, l ared nizati gh er	nix of vell-su zatio adec r mai tions of ac in th out no for on (n nd of	f stab uited n quate intena ; ddition e forr ot yet nay ra scale	le for ance nal m of ate	10-3 habi avail desii frequ remo	0% n tat; h labilit rable uently oved.	nix of abita y les ; sub y dist	f stabl t s thar strate urbed	or	Less habita is obv unsta	than at; lao vious ble c	10% ck of ; sub r lac	stal hab strat king	ole itat ie
-	20 19	18 1	7 16	(15)	14	13	12	11	10	9	8	7	6	5	4	3	2	1
2. Pool Substrate Characterization	Mixture of materials, and firm sa prevalent; and subme vegetation	substra with gr and root m erged comm	ate avel ats on.	Mixt mud be d mate vege	ure o or cl omin s and etatio	f soft ay; n ant; s subr n pre	sanc nud m some nerge sent.	l, nay root ed	All m botto mat; vege	nud o om; li no s etatio	r clay ttle o ubmo n.	y or sa r no ro erged	and oot	Hard- bedro veget	-pan ock; r tatior	clay io ro i.	or ot m	at or
	20 19	18 1	7 (16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
3. Pool Variability	Even mix o shallow, la small-shal deep pools	of large irge-de low, sn s prese	ep, nall- ent.	Majo deep	ority o o; ver	of poo y few	ols lai v sha	rge- llow.	Shal more deep	llow p e pre o poo	oools valer Ils.	much nt thar	ו ו	Majoi shallo absei	rity of ow or nt.	f poc poo	ls sr Is	nall-
1	20 19	18 1	7 16	15	14	13	12	11	10	9	8	(\mathcal{I})	6	5	4	3	2	1
4. Sediment Deposition	Little or no enlargeme or point ba than 20% affected by deposition	ent of is ars and of the k y sedin	lands less pottom nent	Som bar I from fine of th sligh pool	ne ne forma i grav sedir ne bot nt dep s.	w inc ation, vel, sa nent; ttom bositio	rease most and o 20-5 affect on in	e in tly r 0% ted;	Mod new fine and of th sedii obst cons beno depo prev	erate grav sedin new e bot ment ructic strictio ds; m ositio calent	e dep el, sa nent bars; ttom depons, ons, oder n of p	osition and or on old 50-8 affect osits a and ate pools	n of d 0% ed; at	Heav mate devel than chan pools due t sedin	y dep rial, i lopm 80% ging alm o sub nent	oosit ncrea of th frequ ost a ostan depc	s of t ased more e bo lently bser itial ositio	ine bar ttom /; nt
	20 19	18 1	7 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
5. Channel Flow Status	Water read both lower minimal ar channel su exposed.	ches ba banks nount d ubstrate	ase of and of e is	Wata avai <259 subs	er fills lable % of strate	s >75 char chan is e	5% of inel; o nel kpose	the or ed.	Wate the a and/ are i	er fills availa or riff mostl	s 25- able o fle su ly exp	75% o chann ubstra posed	of el tes	Very chan prese pools	little nel a ent as	wate nd m s sta	r in lostly nding	/]
Sand Lat	20) 19	18 1	7 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

	Er	Appendix C				
Parameter	Optimal	Suboptimal	Marginal	Poor		
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely		
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
	20 19 18 17 16	15 14 (13/ 12 11	10 9 8 7 6	5 4 3 2 1		
8. Bank Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.		
	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5 4 3 2 1		
9. Riparian Vegetative Zone	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.		
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		

TOTAL 114

Physic	al Habitat Evaluatio	on Form fo	r Low Gra	adient (Pool/	Glide)	Stre	ams		
Waterbody Name:	LETADT SOULL OUL G	IS Key (YYYY	MMDD-hhmm-	User): 3	- 5- 2	021				
Location: FAST RO	ANCH FROM MONTH	PSTREAM -	TO TDAI	BRIDG	·E.	not but t				
REACH	4	and a submit as a second second second	1 - J. Po. J. V. I.Go	<u>8.9750040</u> 0000						
Investigators: Schart	OKORN. MUMMERT.	HADTLEY	Completed	By: P	SCH	OTT				
Parameter	Optimal	Subor	otimal	N	largina	al		P	oor	
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix habitat; well full colonizat potential; ad habitat for m of population presence of substrate in new fall, but prepared for colonization at high end	of stable -suited for tion lequate naintenance ns; additional the form of not yet (may rate of scale)	10-30% habitat; I availabili desirable frequent removed	than at; lac vious; able o	10% si xk of ha ; substr r lackir	table abitat rate ng.			
	20 (19) 18 17 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	2 1
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of so mud or clay; be dominant mats and su vegetation p	oft sand, ; mud may t; some root ibmerged present.	All mud o bottom; l mat; no s vegetatio	or clay little or submei on.	or sand no root rged	Hard bedro vege	-pan o ock; n tation	clay or o root	mat or
<u> </u>	20 19 18 (17) 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	2 1
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of p deep; very f	ools large- ew shallow.	Shallow more pre deep poo	pools r evalent ols.	nuch than	Majo shall abse	nty of ow or nt.	pools pools	small-
	20 19 18 17 16	(15) 14 1	3 12 11	10 9	8	76	5	4	3 2	2 1
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 20% of the bottom affected by sediment deposition	Some new in bar formatio from gravel, fine sedimer of the botton slight depos pools.	ncrease in n, mostly sand or nt; 20-50% n affected; ition in	Moderate new grav fine sedii and new of the bo sedimen obstructi constrict bends; m depositic prevalen	e depo vel, sar ment o bars; { ttom at t depos ons, ions, an oderat on of po t.	sition of n old 50-80% ffected; sits at nd te pols	Heav mate deve than chan pools due t sedir	rial, ir lopme 80% (ging f s almo to sub nent c	osits o icrease ant; mo of the k requen ost abs stantia deposit	of fine ed bar pre pottom ntly; ent l ion.
	20 19 18 17 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	2 1
5. Channel Flow Status 20	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills > available cha <25% of cha substrate is	75% of the annel; or annel exposed.	Water fill the availa and/or rif are most	ls 25-7 able ch ffle sub ly expo	5% of annel strates osed.	Very chan prese pools	little v nel ar ent as 3.	vater ir ıd mos standi	n tly ing
	20 19 18 17 16	15 14 1	3 12 11	10 9	8	7 6	5	4	3 2	! 1

EAST BRANCH REACH 4

Appendix C

Parameter	Optimal	Suboptimal	Marginal	Poor				
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely				
	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
8. Bank Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.				
	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
9. Riparian Vegetative Zone	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				

TOTAL 144

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

Appendix D

July 26, 2018

Mr. Chet Halenborth Cumberland County Trout Unlimited PO Box 520 Carlisle, PA 17013

Certificate of Analysis

Project Name:	Cumberland Co. Trout Unlimited	Workorder:	2324727
Purchase Order:	Paid \$135 CC	Workorder ID:	Cumberland Co. Trout Unlimited

Dear Mr. Halenborth:

Enclosed are the analytical results for samples received by the laboratory on Friday, July 6, 2018.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Kelli A Snow (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Kelli A Snow Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

Appendix D

SAMPLE SUMMARY

Workorder: 2324727 Cumberland Co. Trout Unlimited

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
2324727001	RTE 34 Bridge	Solid	7/6/2018 09:15	7/6/2018 11:47	Collected by Client
2324727002	Luciano's	Solid	7/6/2018 09:15	7/6/2018 11:47	Collected by Client
2324727003	Spring Garden	Solid	7/6/2018 09:15	7/6/2018 11:47	Collected by Client

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2324727 Cumberland Co. Trout Unlimited

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97)
- refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incurbator and the "Analyzed" value is the date/time out the incubator.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Appendix D

34 Dogwood Lane Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2324727 Cumberland Co. Trout Unlimited

Lab ID: Sample ID:	2324727001 RTE 34 Bridge					Date Collected: Date Received:	7/6/2018 09:1 7/6/2018 11:47	5 7	Matrix: S	Solid	
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
WET CHEMIS	TRY										
Moisture		54.3		%	0.1	S2540G-11			7/13/18 09:38	AXD	А
Phosphorus, 1	Total	665		mg/kg	223	EPA 365.1	7/13/18 10:36	CTD	7/18/18 08:50	KXK	А
Total Solids		45.7		%	0.1	S2540G-11			7/13/18 09:38	AXD	А

ei Stord

Kelli A Snow Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

Appendix D

ANALYTICAL RESULTS

Workorder: 2324727 Cumberland Co. Trout Unlimited

Lab ID: Sample ID:	2324727002 Luciano's					Date Collected: Date Received:	7/6/2018 09:15 7/6/2018 11:47	5	Matrix: S	Solid		
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMIS	STRY											
Moisture		42.2		%	0.1	S2540G-11			7/13/18 09:38	AXD	А	
Phosphorus, 1	Fotal	403		mg/kg	173	EPA 365.1	7/13/18 10:36	CTD	7/18/18 08:50	KXK	А	
Total Solids		57.8		%	0.1	S2540G-11			7/13/18 09:38	AXD	А	

ei Stord

Kelli A Snow Project Coordinator

ALS Environmental Laboratory Locations Across North America

Appendix D

34 Dogwood Lane Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2324727 Cumberland Co. Trout Unlimited

Lab ID: Sample ID:	2324727003 Spring Garden					Date Collected: Date Received:	7/6/2018 09:15 7/6/2018 11:47	5 7	Matrix: S	Solid		
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMIS	TRY											
Moisture		35.5		%	0.1	S2540G-11			7/13/18 09:38	AXD	А	
Phosphorus, 1	Total	674		mg/kg	146	EPA 365.1	7/13/18 10:36	CTD	7/18/18 08:50	KXK	А	
Total Solids		64.5		%	0.1	S2540G-11			7/13/18 09:38	AXD	А	

ei Stord

Kelli A Snow Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

Appendix D

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 2324727 Cumberland Co. Trout Unlimited

Lab ID	Sample ID	Analysis Method	Prep Method
2324727001	RTE 34 Bridge	EPA 365.1	EPA 365.1
2324727001	RTE 34 Bridge	S2540G-11	
2324727002	Luciano's	EPA 365.1	EPA 365.1
2324727002	Luciano's	S2540G-11	
2324727003	Spring Garden	EPA 365.1	EPA 365.1
2324727003	Spring Garden	S2540G-11	

ALS Environmental Laboratory Locations Across North America

	1		7,12	¹ CZ				N of N.	broprie	de op	Circi	pend	*	G	South	ueo pe	PL 10 00	nittno	5	50		_	ş	ŧ		Т	٦
*	Receiving	Z					-	C 253 TERO	Naceds	beaH	H		Ħ	C	COC/Labeis completelascourage			RVICE			Me Sump	ueuudineo					
~	br Samel	ų	idua i	ë	lers:		10	LUDITEN	nsaud pos	anad			ж		ie) un	paviac	aA		_	LO SE	Pickup	- Por	Compos	Rental	Other		1
~	Print of	1.	oler T	Them	el Co	t,		6 Lajunijos	ajdures	раж	°)		H	~	730stni	stea2 (lnosona	1 H)		SFIE				$\overline{\Box}$			
	1 8	1	3		ĝ	Note:	*	- remnist	uset con	ო ე			6) ^	()uesa	n9 elsas	Ápojs	ro		A							┛
* 2.3																				State Semples Collected In?	2] 2	È	M N		UNCONTRACTOR	
					8						lysis									Sinna Sinna	Ļ		ļ	Ţ	2	5	
Page of Courter:				ETHOD REQUESTED						_	r of Containers Per Ana									Standard	CLP-like	S MJ-Reduced			E F Other format type: Ot	DOD Criteria Required?	
				ESIME						1	aper										-	en en	4				
		-	_	IALYS	_	C +	1100	101	0.	-	ter Nu	_									16/10	9	1/ 1/		-	+	4
IS	1	1	1	A	2	570	.75	14	2		ធ	1	-	-	t						ア	Oat	716				
STODY/ ANALYS PLETED BY THE S ON THE BACK	6	304	1		3:	z/10 S	sp! vo r ovd	121- PIECLE	1 7			0)*	× ()	$\times (1)$	*					Card.	N N	y Name	11				
	atner .	in the	-							xid T	ew	03	5)	3	<u>_</u>			-		*	50	mpan	2				
	"Contu	Size	Preserv		-					21	• 9,	9	9	9	- ll-					3	م	y / Co	3				
AIN IES Reas		47									me	15		1						lΰ		/ed B	2				
	R	33										50		_				_		3		Receiv	1				
RE	11	226								ľ	Date	16/1		~						5							
×	71	-6					ŧ	÷		F		1	2 0	_				-		Pil			3	4	9	<u>∞ </u> ∓	4
	ipur	ne: 7						laquired By:									s }			å		Time	111				
	6	Pho				đ	214	Oate F Appro			ents									ments:		_	1				
2057	a			0	5		7	1			mmo		3		1					ct Com		ate	16/19				
PA 1 S41 30	F	F	١	1	2		3,		10		ö	3								Proje		^	N			_	
wood, own, 44-5	E	00		1	2		51	1	12		"							1									
Dog ddlet 17-9	on	2		~ 5	1		24	se day	E.							1						۵					
W Mie	0	Į.	0	10	1			busine and su	U	Ī		-		In	T	—	_	-	-	1		/ Narr					
	el a	10	5	5 1	IJ		11	s t0-12	0		ation	Ш		20	ß						23	upan					
tal	72	1	XQ	1	SC		1	d TATI	15		ab moot	00	м	321	Æ							S-	-				
en c	36	1ª	12)	Z	<u>اة</u> (υf	tandar	3	-	ption an the la	32.1	0	1						Print		(9 By	1				
N F	UN.	0	2	i c	2	n Report	2	shout st	1×	ž	DDear C	46	NE	00	5					please		尾	1				
	0:	(at Look)	0	ia	C	wentthe	5	ĨĀ	١Ť	~	ole Di	39	12	181	P.					BV		- Sel	5	D			
3	lame	act (R	.ess:			0 (145		AL	_≣	2×2	Samp	正	10	20	1					PLEI		2		N			
5	0.0	out	Addr			BII			L m	"		8	1	y	P	6				SAM			1	2	5	~ 0	"

.

.

Page 8 of 8